A Matrix-Variate t Model for Networks

被引:2
作者
Billio, Monica [1 ]
Casarin, Roberto [1 ]
Costola, Michele [1 ]
Iacopini, Matteo [2 ,3 ]
机构
[1] CaFoscari Univ Venice, Dept Econ, Venice, Italy
[2] Vrije Univ Amsterdam, Dept Econometr & Data Sci, Amsterdam, Netherlands
[3] Tinbergen Inst, Amsterdam, Netherlands
来源
FRONTIERS IN ARTIFICIAL INTELLIGENCE | 2021年 / 4卷
关键词
Bayesian; financial markets; matrix-variate distributions; networks; t distribution; C11; C32; C58; SYSTEMIC RISK; CONNECTEDNESS;
D O I
10.3389/frai.2021.674166
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Networks represent a useful tool to describe relationships among financial firms and network analysis has been extensively used in recent years to study financial connectedness. An aspect, which is often neglected, is that network observations come with errors from different sources, such as estimation and measurement errors, thus a proper statistical treatment of the data is needed before network analysis can be performed. We show that node centrality measures can be heavily affected by random errors and propose a flexible model based on the matrix-variate t distribution and a Bayesian inference procedure to de-noise the data. We provide an application to a network among European financial institutions.
引用
收藏
页数:7
相关论文
共 32 条
  • [1] Bayesian Graphical Models for STructural Vector Autoregressive Processes
    Ahelegbey, Daniel Felix
    Billio, Monica
    Casarin, Roberto
    [J]. JOURNAL OF APPLIED ECONOMETRICS, 2016, 31 (02) : 357 - 386
  • [2] Ahelegbey Daniel Felix, 2016, Annals of Economics and Statistics, V123, P333, DOI DOI 10.15609/ANNAECONSTAT2009.123-124.0333
  • [3] NETS: Network estimation for time series
    Barigozzi, Matteo
    Brownlees, Christian
    [J]. JOURNAL OF APPLIED ECONOMETRICS, 2019, 34 (03) : 347 - 364
  • [4] Modeling systemic risk with Markov Switching Graphical SUR models
    Bianchi, Daniele
    Billio, Monica
    Casarin, Roberto
    Guidolin, Massimo
    [J]. JOURNAL OF ECONOMETRICS, 2019, 210 (01) : 58 - 74
  • [5] Bayesian nonparametric sparse VAR models
    Billio, Monica
    Casarin, Roberta
    Rossini, Luca
    [J]. JOURNAL OF ECONOMETRICS, 2019, 212 (01) : 97 - 115
  • [6] Econometric measures of connectedness and systemic risk in the finance and insurance sectors
    Billio, Monica
    Getmansky, Mila
    Lo, Andrew W.
    Pelizzon, Loriana
    [J]. JOURNAL OF FINANCIAL ECONOMICS, 2012, 104 (03) : 535 - 559
  • [7] The structure and dynamics of multilayer networks
    Boccaletti, S.
    Bianconi, G.
    Criado, R.
    del Genio, C. I.
    Gomez-Gardenes, J.
    Romance, M.
    Sendina-Nadal, I.
    Wang, Z.
    Zanin, M.
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2014, 544 (01): : 1 - 122
  • [8] Bollobas B., 1998, MODERN GRAPH THEORY
  • [9] Bollobas B., 2001, Cambridge Studies in Advanced Math- ematics), V73, DOI 10.1017/CBO9780511814068
  • [10] The dynamic factor network model with an application to international trade
    Brauning, Falk
    Koopman, Siem Jan
    [J]. JOURNAL OF ECONOMETRICS, 2020, 216 (02) : 494 - 515