Nucleation and diffusion processes during the stacking of bilayer quantum dot InAs/GaAs heterostructures

被引:3
作者
Mercado-Ornelas, C. A. [1 ]
Espinosa-Vega, L. I. [1 ]
Cortes-Mestizo, I. E. [2 ]
Perea-Parrales, F. E. [1 ]
Belio-Manzano, A. [1 ]
Mendez-Garcia, V. H. [1 ]
机构
[1] Univ Autonoma San Luis Potosi UASLP, Ctr Innovat & Applicat Sci & Technol, Av Sierra Leona 550,Col Lomas 2a Secc, San Luis Potosi 78210, San Luis Potosi, Mexico
[2] Univ Autonoma San Luis Potosi UASLP, CONACYT Ctr Innovat & Applicat Sci & Technol, Av Sierra Leona 550,Col Lomas 2a Secc, San Luis Potosi 78210, San Luis Potosi, Mexico
关键词
InAs-quantum dots; Vertical stacking; Strain; Diffusion parameters; Critical thickness; SURFACE SEGREGATION; GROWTH; TEMPERATURE; RELAXATION; STRESS;
D O I
10.1016/j.jcrysgro.2020.125959
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
The growth front stacking of bilayer quantum dot (BQD) InAs/GaAs heterostructures was studied by reflection high-energy electron diffraction (RHEED). The mean-field theory was employed to describe the quantum dots (QDs) nucleation, which was experimentally monitored during the intensity changes of the (002)-RHEED diffraction spot along the two- to three-dimensional (2D-3D) InAs growth mode transition. The diffusion parameter obtained from fits of the 2D-3D transition curves was associated to the rate of atoms supply from 2D and 3D islands precursors. The variation of the nucleation parameters during the vertical alignment of QDs associated to the coupling of strain fields were related to the changes of the QDs size and the wetting layer thickness. Numerical simulations indicated that these changes reduce the strain in the BQD heterostructures. Damped oscillatory behavior was observed for the InAs/GaAs critical thickness (H-c) as a function of the number of BQD. The bilayer number after which H-c did not vary significantly, coincided with the one without important variation of the diffusion parameters. The number of BQD layers required to reach this quasi-equilibrium condition depends on the growth parameters of the first layer and the spacer layer thickness, as supported by numerical simulations.
引用
收藏
页数:6
相关论文
共 43 条
[21]   Real-time determination of the segregation strength of indium atoms in InGaAs layers grown by molecular-beam epitaxy [J].
Martini, S ;
Quivy, AA ;
da Silva, ECF ;
Leite, JR .
APPLIED PHYSICS LETTERS, 2002, 81 (15) :2863-2865
[22]   GaAs/InGaAs heterostructure strain effects on self-assembly of InAs quantum dots [J].
Mercado-Ornelas, C. A. ;
Cortes-Mestizo, I. E. ;
Eugenio-Lopez, E. ;
Espinosa-Vega, L. I. ;
Garcia-Compean, D. ;
Lara-Velazquez, I. ;
Gorbatchev, A. Yu. ;
Zamora-Peredo, L. ;
Yee-Rendon, C. M. ;
Mendez-Garcia, V. H. .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2020, 124
[23]   Real-time investigation of In surface segregation in chemical beam epitaxy of In0.5Ga0.5P on GaAs (001) [J].
Mesrine, M ;
Massies, J ;
Deparis, C ;
Grandjean, N ;
Vanelle, E .
APPLIED PHYSICS LETTERS, 1996, 68 (25) :3579-3581
[24]   Mid-Infrared Quantum-Dot Quantum Cascade Laser: A Theoretical Feasibility Study [J].
Michael, Stephan ;
Chow, Weng W. ;
Schneider, Hans Christian .
PHOTONICS, 2016, 3 (02)
[25]   Clarifying photoluminescence decay dynamics of self-assembled quantum dots [J].
Minh Tan Man ;
Lee, Hong Seok .
SCIENTIFIC REPORTS, 2019, 9 (1)
[26]   Elastic relaxation during 2D epitaxial growth:: a study of in-plane lattice spacing oscillations [J].
Müller, P ;
Turban, P ;
Lapena, L ;
Andrieu, S .
SURFACE SCIENCE, 2001, 488 (1-2) :52-72
[27]   RHEED monitoring of elastic stresses during MBE growth of group III nitride heterostructures [J].
Nechaev, D. V. ;
Jmerik, V. N. ;
Mizerov, A. M. ;
Kop'ev, P. S. ;
Ivanov, S. V. .
TECHNICAL PHYSICS LETTERS, 2012, 38 (05) :443-445
[28]   Apparent critical thickness versus temperature for InAs quantum dot growth on GaAs(001) [J].
Patella, F ;
Arciprete, F ;
Fanfoni, M ;
Balzarotti, A ;
Placidi, E .
APPLIED PHYSICS LETTERS, 2006, 88 (16)
[29]   Low-Dimensional Nanostructure Ultraviolet Photodetectors [J].
Peng, Lin ;
Hu, Linfeng ;
Fang, Xiaosheng .
ADVANCED MATERIALS, 2013, 25 (37) :5321-5328
[30]  
Petitprez E, 2002, PHYS STATUS SOLIDI B, V232, P164, DOI 10.1002/1521-3951(200207)232:1<164::AID-PSSB164>3.0.CO