Nucleation and diffusion processes during the stacking of bilayer quantum dot InAs/GaAs heterostructures

被引:3
作者
Mercado-Ornelas, C. A. [1 ]
Espinosa-Vega, L. I. [1 ]
Cortes-Mestizo, I. E. [2 ]
Perea-Parrales, F. E. [1 ]
Belio-Manzano, A. [1 ]
Mendez-Garcia, V. H. [1 ]
机构
[1] Univ Autonoma San Luis Potosi UASLP, Ctr Innovat & Applicat Sci & Technol, Av Sierra Leona 550,Col Lomas 2a Secc, San Luis Potosi 78210, San Luis Potosi, Mexico
[2] Univ Autonoma San Luis Potosi UASLP, CONACYT Ctr Innovat & Applicat Sci & Technol, Av Sierra Leona 550,Col Lomas 2a Secc, San Luis Potosi 78210, San Luis Potosi, Mexico
关键词
InAs-quantum dots; Vertical stacking; Strain; Diffusion parameters; Critical thickness; SURFACE SEGREGATION; GROWTH; TEMPERATURE; RELAXATION; STRESS;
D O I
10.1016/j.jcrysgro.2020.125959
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
The growth front stacking of bilayer quantum dot (BQD) InAs/GaAs heterostructures was studied by reflection high-energy electron diffraction (RHEED). The mean-field theory was employed to describe the quantum dots (QDs) nucleation, which was experimentally monitored during the intensity changes of the (002)-RHEED diffraction spot along the two- to three-dimensional (2D-3D) InAs growth mode transition. The diffusion parameter obtained from fits of the 2D-3D transition curves was associated to the rate of atoms supply from 2D and 3D islands precursors. The variation of the nucleation parameters during the vertical alignment of QDs associated to the coupling of strain fields were related to the changes of the QDs size and the wetting layer thickness. Numerical simulations indicated that these changes reduce the strain in the BQD heterostructures. Damped oscillatory behavior was observed for the InAs/GaAs critical thickness (H-c) as a function of the number of BQD. The bilayer number after which H-c did not vary significantly, coincided with the one without important variation of the diffusion parameters. The number of BQD layers required to reach this quasi-equilibrium condition depends on the growth parameters of the first layer and the spacer layer thickness, as supported by numerical simulations.
引用
收藏
页数:6
相关论文
共 43 条
[1]   In-situ measurement of indium segregation in InAs/GaAs submonolayer quantum dots [J].
Cantalice, Tiago F. ;
Alzeidan, Ahmad ;
Urahata, Sergio M. ;
Quivy, Alain A. .
MATERIALS RESEARCH EXPRESS, 2019, 6 (12)
[2]   Critical thickness for InAs quantum dot formation on (311)B InP substrates [J].
Caroff, P. ;
Bertru, N. ;
Lu, W. ;
Elias, G. ;
Dehaese, O. ;
Leoublon, A. ;
Le Corre, A. .
JOURNAL OF CRYSTAL GROWTH, 2009, 311 (09) :2626-2629
[3]   Mean-field theory of quantum dot formation [J].
Dobbs, HT ;
Vvedensky, DD ;
Zangwill, A ;
Johansson, J ;
Carlsson, N ;
Seifert, W .
PHYSICAL REVIEW LETTERS, 1997, 79 (05) :897-900
[4]   InAs quantum dots nucleation on (100) and anisotropic (631)-oriented GaAs substrates [J].
Eugenio-Lopez, E. ;
Lopez-Lopez, M. ;
Gorbatchev, A. Yu. ;
Espinosa-Vega, L. I. ;
Cortes-Mestizo, I. E. ;
Mercado-Ornelas, C. A. ;
Del Rio-De Santiago, A. ;
Mendez-Garcia, Victor H. .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2018, 95 :22-26
[5]   RHEED metrology of Stranski-Krastanov quantum dots [J].
Feltrin, A. ;
Freundlich, A. .
JOURNAL OF CRYSTAL GROWTH, 2007, 301 :38-41
[6]   Strain relaxation and segregation effects during self-assembled InAs quantum dots formation on GaAs(001) [J].
García, JM ;
Silveira, JP ;
Briones, F .
APPLIED PHYSICS LETTERS, 2000, 77 (03) :409-411
[7]   INSITU PROBING AT THE GROWTH TEMPERATURE OF THE SURFACE-COMPOSITION OF (INGA)AS AND (INAL)AS [J].
GERARD, JM .
APPLIED PHYSICS LETTERS, 1992, 61 (17) :2096-2098
[8]   Capping process of InAs/GaAs quantum dots studied by cross-sectional scanning tunneling microscopy [J].
Gong, Q ;
Offermans, P ;
Nötzel, R ;
Koenraad, PM ;
Wolter, JH .
APPLIED PHYSICS LETTERS, 2004, 85 (23) :5697-5699
[9]   INAS/GAAS PYRAMIDAL QUANTUM DOTS - STRAIN DISTRIBUTION, OPTICAL PHONONS, AND ELECTRONIC-STRUCTURE [J].
GRUNDMANN, M ;
STIER, O ;
BIMBERG, D .
PHYSICAL REVIEW B, 1995, 52 (16) :11969-11981
[10]  
Hasegawa S., 2012, CHARACTERIZATION MAT