RC-MVSNet: Unsupervised Multi-View Stereo with Neural Rendering

被引:29
作者
Chang, Di [1 ]
Bozic, Aljaz [1 ]
Zhang, Tong [2 ]
Yan, Qingsong [3 ]
Chen, Yingcong [3 ]
Susstrunk, Sabine [2 ]
Niessner, Matthias [1 ]
机构
[1] Tech Univ Munich, Munich, Germany
[2] Ecole Polytech Fed Lausanne, Canton Of Vaud, Switzerland
[3] Hong Kong Univ Sci & Technol, Hong Kong, Peoples R China
来源
COMPUTER VISION, ECCV 2022, PT XXXI | 2022年 / 13691卷
关键词
End-to-end Unsupervised Multi-View Stereo; Neural rendering; Depth estimation;
D O I
10.1007/978-3-031-19821-2_38
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Finding accurate correspondences among different views is the Achilles' heel of unsupervised Multi-View Stereo (MVS). Existing methods are built upon the assumption that corresponding pixels share similar photometric features. However, multi-view images in real scenarios observe non-Lambertian surfaces and experience occlusions. In this work, we propose a novel approach with neural rendering (RC-MVSNet) to solve such ambiguity issues of correspondences among views. Specifically, we impose a depth rendering consistency loss to constrain the geometry features close to the object surface to alleviate occlusions. Concurrently, we introduce a reference view synthesis loss to generate consistent supervision, even for non-Lambertian surfaces. Extensive experiments on DTU and Tanks&Temples benchmarks demonstrate that our RC-MVSNet approach achieves state-of-the-art performance over unsupervised MVS frameworks and competitive performance to many supervised methods. The code is released at https://github.com/Boese0601/RC-MVSNet.
引用
收藏
页码:665 / 680
页数:16
相关论文
共 37 条
[1]   Large-Scale Data for Multiple-View Stereopsis [J].
Aanaes, Henrik ;
Jensen, Rasmus Ramsbol ;
Vogiatzis, George ;
Tola, Engin ;
Dahl, Anders Bjorholm .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2016, 120 (02) :153-168
[2]  
Rosu RA, 2022, Arxiv, DOI arXiv:2108.03880
[3]  
[Anonymous], 2006, P IEEE COMP SOC C CO
[4]  
[Anonymous], TANKS TEMPLES LEADER
[5]   Deep Reflectance Volumes: Relightable Reconstructions from Multi-view Photometric Images [J].
Bi, Sai ;
Xu, Zexiang ;
Sunkavalli, Kalyan ;
Hasan, Milos ;
Hold-Geoffroy, Yannick ;
Kriegman, David ;
Ramamoorthi, Ravi .
COMPUTER VISION - ECCV 2020, PT III, 2020, 12348 :294-311
[6]  
Chen AP, 2021, Arxiv, DOI arXiv:2103.15595
[7]   Deep Stereo using Adaptive Thin Volume Representation with Uncertainty Awareness [J].
Cheng, Shuo ;
Xu, Zexiang ;
Zhu, Shilin ;
Li, Zhuwen ;
Li, Li Erran ;
Ramamoorthi, Ravi ;
Su, Hao .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, :2521-2531
[8]   MVS2: Deep Unsupervised Multi-view Stereo with Multi-View Symmetry [J].
Dai, Yuchao ;
Zhu, Zhidong ;
Rao, Zhibo ;
Li, Bo .
2019 INTERNATIONAL CONFERENCE ON 3D VISION (3DV 2019), 2019, :1-8
[9]   Fast R-CNN [J].
Girshick, Ross .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, :1440-1448
[10]   Cascade Cost Volume for High-Resolution Multi-View Stereo and Stereo Matching [J].
Gu, Xiaodong ;
Fan, Zhiwen ;
Zhu, Siyu ;
Dai, Zuozhuo ;
Tan, Feitong ;
Tan, Ping .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, :2492-2501