Probability and Fourier Duality for Affine Iterated Function Systems

被引:28
作者
Dutkay, Dorin Ervin [1 ]
Jorgensen, Palle E. T. [2 ]
机构
[1] Univ Cent Florida, Dept Math, Orlando, FL 32816 USA
[2] Univ Iowa, Dept Math, Iowa City, IA 52242 USA
关键词
Iterated function system; Fourier; Fourier decomposition; Hilbert space; Orthogonal basis; Spectral duality; Dynamical system; Path-space measure; Spectrum; Infinite product; HARMONIC-ANALYSIS; FRACTAL MEASURES; WAVELETS; OPERATORS; ALGEBRA;
D O I
10.1007/s10440-008-9384-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let d be a positive integer, and let mu be a finite measure on R-d. In this paper we ask when it is possible to find a subset Lambda in R-d such that the corresponding complex exponential functions e. indexed by Lambda are orthogonal and total in L-2(mu). If this happens, we say that (mu, Lambda) is a spectral pair. This is a Fourier duality, and the x-variable for the L-2(mu)-functions is one side in the duality, while the points in Lambda is the other. Stated this way, the framework is too wide, and we shall restrict attention to measures mu which come with an intrinsic scaling symmetry built in and specified by a finite and prescribed system of contractive affine mappings in R-d; an affine iterated function system (IFS). This setting allows us to generate candidates for spectral pairs in such a way that the sets on both sides of the Fourier duality are generated by suitably chosen affine IFSs. For a given affine setup, we spell out the appropriate duality conditions that the two dual IFS-systems must have. Our condition is stated in terms of certain complex Hadamard matrices. Our main results give two ways of building higher dimensional spectral pairs from combinatorial algebra and spectral theory applied to lower dimensional systems.
引用
收藏
页码:293 / 311
页数:19
相关论文
共 24 条