FRACTIONAL COMPOUND POISSON PROCESSES WITH MULTIPLE INTERNAL STATES

被引:18
作者
Xu, Pengbo [1 ]
Deng, Weihua [1 ]
机构
[1] Lanzhou Univ, Gansu Key Lab Appl Math & Complex Syst, Sch Math & Stat, Lanzhou 730000, Gansu, Peoples R China
基金
中国国家自然科学基金;
关键词
Fractional compound Poisson processes; generalized Fokker-Planck equation; generalized Feynman-Kac equation; first passage time; non-repeat random walk; ANOMALOUS DIFFUSION; DIFFERENTIAL-EQUATIONS; NUMERICAL-SOLUTION; RANDOM-WALKS; TIME; SIMULATION; SYSTEM;
D O I
10.1051/mmnp/2018001
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
For the particles undergoing the anomalous diffusion with different waiting time distributions for different internal states, we derive the Fokker-Planck and Feymann-Kac equations, respectively, describing positions of the particles and functional distributions of the trajectories of particles; in particular, the equations governing the functional distribution of internal states are also obtained. The dynamics of the stochastic processes are analyzed and the applications, calculating the distribution of the first passage time and the distribution of the fraction of the occupation time, of the equations are given. For the further application of the newly built models, we make very detailed discussions on the none-immediately-repeated stochastic process, e.g., the random walk of smart animals.
引用
收藏
页数:22
相关论文
共 46 条
  • [1] Abramowitz M., 1972, Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables
  • [2] Residence Time Statistics for N Renewal Processes
    Burov, S.
    Barkai, E.
    [J]. PHYSICAL REVIEW LETTERS, 2011, 107 (17)
  • [3] Anomalous Processes with General Waiting Times: Functionals and Multipoint Structure
    Cairoli, Andrea
    Baule, Adrian
    [J]. PHYSICAL REVIEW LETTERS, 2015, 115 (11)
  • [4] On Distributions of Functionals of Anomalous Diffusion Paths
    Carmi, Shai
    Turgeman, Lior
    Barkai, Eli
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2010, 141 (06) : 1071 - 1092
  • [5] Fluid limit of the continuous-time random walk with general Levy jump distribution functions
    Cartea, A.
    del-Castillo-Negrete, D.
    [J]. PHYSICAL REVIEW E, 2007, 76 (04):
  • [6] Retarding subdiffusion and accelerating superdiffusion governed by distributed-order fractional diffusion equations
    Chechkin, AV
    Gorenflo, R
    Sokolov, IM
    [J]. PHYSICAL REVIEW E, 2002, 66 (04): : 7 - 046129
  • [7] Amnestically induced persistence in random walks
    Cressoni, J. C.
    Alves da Silva, Marco Antonio
    Viswanathan, G. M.
    [J]. PHYSICAL REVIEW LETTERS, 2007, 98 (07)
  • [8] Mean exit time and escape probability for the anomalous processes with the tempered power-law waiting times
    Deng, Weihua
    Wu, Xiaochao
    Wang, Wanli
    [J]. EPL, 2017, 117 (01)
  • [9] Path integrals and perturbation theory for stochastic processes
    Dickman, R
    Vidigal, R
    [J]. BRAZILIAN JOURNAL OF PHYSICS, 2003, 33 (01) : 73 - 93
  • [10] Feller W., 1968, INTRO PROBABILITY TH