Monolithic metasurface spatial differentiator enabled by asymmetric photonic spin-orbit interactions

被引:38
作者
He, Qiong [1 ]
Zhang, Fei [1 ]
Pu, MingBo [1 ,2 ]
Ma, XiaoLiang [1 ,2 ]
Li, Xiong [1 ,2 ]
Jin, JinJin [1 ]
Guo, YingHui [1 ,2 ]
Luo, XianGang [1 ,2 ]
机构
[1] Chinese Acad Sci, State Key Lab Opt Technol Nanofabricat & Microeng, Inst Opt & Elect, Chengdu 610209, Peoples R China
[2] Univ Chinese Acad Sci, Sch Optoelect, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
asymmetric photonic spin-orbit interactions; edge detection; metasurface; spatial differentiator; BROAD-BAND; RESOLUTION; PHASE;
D O I
10.1515/nanoph-2020-0366
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Spatial differentiator is the key element for edge detection, which is indispensable in image processing, computer vision involving image recognition, image restoration, image compression, and so on. Spatial differentiators based on metasurfaces are simpler and more compact compared with traditional bulky optical analog differentiators. However, most of them still rely on complex optical systems, leading to the degraded compactness and efficiency of the edge detection systems. To further reduce the complexity of the edge detection system, a monolithic metasurface spatial differentiator is demonstrated based on asymmetric photonic spin-orbit interactions. Edge detection can be accomplished via such a monolithic metasurface using the polarization degree. Experimental results show that the designed monolithic spatial differentiator works in a broadband range. Moreover, 2D edge detection is experimentally demonstrated by the proposed monolithic metasurface. The proposed design can be applied at visible and near-infrared wavelengths by proper dielectric materials and designs. We envision this approach may find potential applications in optical analog computing on compact optical platforms.
引用
收藏
页码:741 / 748
页数:8
相关论文
共 45 条
  • [1] Arbabi A, 2015, NAT NANOTECHNOL, V10, P937, DOI [10.1038/nnano.2015.186, 10.1038/NNANO.2015.186]
  • [2] Optical cloaking with metamaterials
    Cai, Wenshan
    Chettiar, Uday K.
    Kildishev, Alexander V.
    Shalaev, Vladimir M.
    [J]. NATURE PHOTONICS, 2007, 1 (04) : 224 - 227
  • [3] Flat optics with dispersion-engineered metasurfaces
    Chen, Wei Ting
    Zhu, Alexander Y.
    Capasso, Federico
    [J]. NATURE REVIEWS MATERIALS, 2020, 5 (08) : 604 - 620
  • [4] High-Index Dielectric Metasurfaces Performing Mathematical Operations
    Cordaro, Andrea
    Kwon, Hoyeong
    Sounas, Dimitrios
    Koenderink, A. Femius
    Alu, Andrea
    Polman, Albert
    [J]. NANO LETTERS, 2019, 19 (12) : 8148 - 8423
  • [5] Optical spatial differentiator based on subwavelength high-contrast gratings
    Dong, Zhewei
    Si, Jiangnan
    Yu, Xuanyi
    Deng, Xiaoxu
    [J]. APPLIED PHYSICS LETTERS, 2018, 112 (18)
  • [6] Off-axis multi-wavelength dispersion controlling metalens for multi-color imaging
    Dou, Kaihua
    Xie, Xin
    Pu, Mingbo
    Li, Xiong
    Ma, Xiaoliang
    Wang, Changtao
    Luo, Xiangang
    [J]. OPTO-ELECTRONIC ADVANCES, 2020, 3 (04) : 1 - 7
  • [7] Metasurfaces nanoantennas for light processing
    Farmahini-Farahani, Mohsen
    Cheng, Jierong
    Mosallaei, Hossein
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2013, 30 (09) : 2365 - 2370
  • [8] Spiral phase contrast imaging in microscopy
    Fürhapter, S
    Jesacher, A
    Bernet, S
    Ritsch-Marte, M
    [J]. OPTICS EXPRESS, 2005, 13 (03): : 689 - 694
  • [9] Ultra-thin plasmonic optical vortex plate based on phase discontinuities
    Genevet, Patrice
    Yu, Nanfang
    Aieta, Francesco
    Lin, Jiao
    Kats, Mikhail A.
    Blanchard, Romain
    Scully, Marlan O.
    Gaburro, Zeno
    Capasso, Federico
    [J]. APPLIED PHYSICS LETTERS, 2012, 100 (01)
  • [10] Polarization multiplexing for double images display
    Guo, Jinying
    Wang, Teng
    Quan, Baogang
    Zhao, Huan
    Gu, Changzhi
    Li, Junjie
    Wang, Xinke
    Situ, Guohai
    Zhang, Yan
    [J]. OPTO-ELECTRONIC ADVANCES, 2019, 2 (07) : 1 - 6