Limitation of a localized surface plasmon resonance sensor for Salmonella detection

被引:26
|
作者
Fu, Junxue [1 ,2 ]
Park, Bosoon [3 ]
Zhao, Yiping [1 ,2 ]
机构
[1] Univ Georgia, Nanoscale Sci & Engn Ctr, Athens, GA 30602 USA
[2] Univ Georgia, Dept Phys & Astron, Athens, GA 30602 USA
[3] USDA ARS, Russell Res Ctr, Athens, GA 30605 USA
来源
SENSORS AND ACTUATORS B-CHEMICAL | 2009年 / 141卷 / 01期
基金
美国国家科学基金会;
关键词
Localized surface plasmon resonance sensor; Salmonella detection; Au nanoparticle; LABEL-FREE DETECTION; RAPID DETECTION; QUANTITATIVE INTERPRETATION; ANTIGEN-ANTIBODY; BIOSENSOR; TYPHIMURIUM; DEPENDENCE; ELISA; BEADS;
D O I
10.1016/j.snb.2009.06.020
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
We have designed a localized surface plasmon resonance (LSPR) biosensor to perform whole cell detection of Salmonella using Au nanoparticles fabricated by an oblique angle deposition technique. The LSPR sensor shows a plasmon peak shift due to the Salmonella antigen and anti-Salmonella antibody reaction as verified by scanning electron microscopy and fluorescence microscopy. However, this shift is not sensitive to the concentration of the bacteria. We have modeled this detection system by means of Mie theory and effective medium theory, and find that due to the small contact area between the nanoparticle and the bacteria and the short range interaction of the local electric field, the plasmon peak shift induced by such a system is about 2-4 nm, regardless of the concentration of the bacteria. This is consistent with the experiments, and an alternative method is needed if the LSPR sensor is used for whole cell bacteria detection. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:276 / 283
页数:8
相关论文
共 50 条
  • [21] Development of new localized surface plasmon resonance sensor with nanoimprinting technique
    Nishikawa, Takeo
    Yamashita, Hideyuki
    Nakamura, Megumi
    Hasui, Ryosuke
    Matsushita, Tornohiko
    Aoyama, Shigeru
    2006 1ST IEEE INTERNATIONAL CONFERENCE ON NANO/MICRO ENGINEERED AND MOLECULAR SYSTEMS, VOLS 1-3, 2006, : 262 - 265
  • [22] Studies on the Sensitivity of the Fiber Sensor Based on the Localized Surface Plasmon Resonance
    Li, Jiangyan
    NANOSCIENCE AND NANOTECHNOLOGY LETTERS, 2017, 9 (11) : 1714 - 1719
  • [23] Localized surface plasmon resonance based fiber optic sensor with nanoparticles
    Rani, Mahima
    Sharma, Navneet K.
    Sajal, Vivek
    OPTICS COMMUNICATIONS, 2013, 292 : 92 - 100
  • [24] Aptamer-functionalized localized surface plasmon resonance sensor for the multiplexed detection of different bacterial species
    Yoo, Seung Min
    Kim, Do-Kyun
    Lee, Sang Yup
    TALANTA, 2015, 132 : 112 - 117
  • [25] Lossy mode resonance surface plasmon resonance sensor for malaria detection
    Singh, Bhupinder
    Dixit, Amit
    Dua, Piyush
    JOURNAL OF OPTICS-INDIA, 2024, 53 (5): : 4466 - 4476
  • [26] High Sensitivity Localized Surface Plasmon Resonance Sensor of Gold Nanoparticles : Surface Density Effect for Detection of Boric Acid
    Morsin, Marlia
    Umar, Akrajas Ali
    Salleh, Muhamad Mat
    Majlis, Burhanuddin Yeop
    2012 10TH IEEE INTERNATIONAL CONFERENCE ON SEMICONDUCTOR ELECTRONICS (ICSE), 2012, : 352 - 356
  • [27] Developments in Localized Surface Plasmon Resonance
    Mcoyi, M. P.
    Mpofu, K. T.
    Sekhwama, M.
    Mthunzi-Kufa, P.
    PLASMONICS, 2024,
  • [28] Localized surface plasmon resonance biosensors
    Zhao, Jing
    Zhang, Xiaoyu
    Yonzon, Chanda Ranjit
    Haes, Amanda J.
    Van Duyne, Richard P.
    NANOMEDICINE, 2006, 1 (02) : 219 - 228
  • [29] Localized Surface Plasmon Resonance Sensors
    Mayer, Kathryn M.
    Hafner, Jason H.
    CHEMICAL REVIEWS, 2011, 111 (06) : 3828 - 3857
  • [30] Surface plasmons to Zika virus detection: Detection of NS1 protein utilizing localized surface plasmon resonance and surface plasmon resonance spectroscopy
    Santos, Jonnatan
    Silveira, Raisa
    Toma, Sergio
    Araki, Koiti
    Brolo, Alexandre
    Corio, Paola
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 255