Exact solutions for the quintic nonlinear Schrodinger equation with inhomogeneous nonlinearity

被引:12
|
作者
Belmonte-Beitia, Juan [1 ,2 ]
机构
[1] Univ Castilla La Mancha, ETS Ingn Ind, Dept Matemat, E-13071 Ciudad Real, Spain
[2] Univ Castilla La Mancha, IMACI, E-13071 Ciudad Real, Spain
关键词
D O I
10.1016/j.chaos.2008.04.035
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, using Lie group theory and canonical transformations, we construct explicit solutions of quintic nonlinear Schrodinger equations with spatially inhomogeneous nonlinearities. We present the general theory and use it to study some examples. (c) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1005 / 1009
页数:5
相关论文
共 50 条
  • [31] Exact solutions of the two-dimensional discrete nonlinear Schrodinger equation with saturable nonlinearity
    Khare, Avinash
    Rasmussen, Kim O.
    Samuelsen, Mogens R.
    Saxena, Avadh
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (37)
  • [32] Traveling wave and exact solutions for the perturbed nonlinear Schrodinger equation with Kerr law nonlinearity
    Akram, Ghazala
    Mahak, Nadia
    EUROPEAN PHYSICAL JOURNAL PLUS, 2018, 133 (06):
  • [33] Exact soliton solutions and their stability control in the nonlinear Schrodinger equation with spatiotemporally modulated nonlinearity
    Tian, Qing
    Wu, Lei
    Zhang, Jie-Fang
    Malomed, Boris A.
    Mihalache, D.
    Liu, W. M.
    PHYSICAL REVIEW E, 2011, 83 (01):
  • [34] New exact solutions to the perturbed nonlinear Schrodinger's equation with Kerr law nonlinearity
    Zhang, Zai-yun
    Liu, Zhen-hai
    Miao, Xiu-jin
    Chen, Yue-zhong
    APPLIED MATHEMATICS AND COMPUTATION, 2010, 216 (10) : 3064 - 3072
  • [35] Exact solutions of a nonlocal nonlinear Schrodinger equation
    Gao, Hui
    Xu, Tianzhou
    Yang, Shaojie
    Wang, Gangwei
    OPTOELECTRONICS AND ADVANCED MATERIALS-RAPID COMMUNICATIONS, 2016, 10 (9-10): : 651 - 657
  • [36] Exact solutions of a generalized nonlinear Schrodinger equation
    Zhang, Shaowu
    Yi, Lin
    PHYSICAL REVIEW E, 2008, 78 (02):
  • [37] The exact solutions for a nonisospectral nonlinear Schrodinger equation
    Ning, Tong-ke
    Zhang, Weiguo
    Jia, Gao
    CHAOS SOLITONS & FRACTALS, 2009, 42 (02) : 1100 - 1105
  • [38] Exact solutions of a nonpolynomially nonlinear Schrodinger equation
    Parwani, R.
    Tan, H. S.
    PHYSICS LETTERS A, 2007, 363 (03) : 197 - 201
  • [39] Investigation of solitons and conservation laws in an inhomogeneous optical fiber through a generalized derivative nonlinear Schrodinger equation with quintic nonlinearity
    Rabie, Wafaa B. B.
    Ahmed, Hamdy M. M.
    Mirzazadeh, Mohammad
    Akbulut, Arzu
    Hashemi, Mir Sajjad
    OPTICAL AND QUANTUM ELECTRONICS, 2023, 55 (09)
  • [40] Exact solutions to the focusing nonlinear Schrodinger equation
    Aktosun, Tuncay
    Demontis, Francesco
    van der Mee, Cornelis
    INVERSE PROBLEMS, 2007, 23 (05) : 2171 - 2195