Exact solutions for the quintic nonlinear Schrodinger equation with inhomogeneous nonlinearity

被引:12
作者
Belmonte-Beitia, Juan [1 ,2 ]
机构
[1] Univ Castilla La Mancha, ETS Ingn Ind, Dept Matemat, E-13071 Ciudad Real, Spain
[2] Univ Castilla La Mancha, IMACI, E-13071 Ciudad Real, Spain
关键词
D O I
10.1016/j.chaos.2008.04.035
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, using Lie group theory and canonical transformations, we construct explicit solutions of quintic nonlinear Schrodinger equations with spatially inhomogeneous nonlinearities. We present the general theory and use it to study some examples. (c) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1005 / 1009
页数:5
相关论文
共 26 条
  • [1] [Anonymous], 1997, NONLINEAR KLEIN GORD
  • [2] [Anonymous], 2003, Optical Solitons
  • [3] [Anonymous], 2000, NONLINEAR SCHRODINGE
  • [4] Lie symmetries and solitons in nonlinear systems with spatially inhomogeneous nonlinearities
    Belmonte-Beitia, Juan
    Perez-Garcia, Victor M.
    Vekslerchik, Vadym
    Torres, Pedro J.
    [J]. PHYSICAL REVIEW LETTERS, 2007, 98 (06)
  • [5] Belmonte-Beitia J, 2008, DISCRETE CONT DYN-B, V9, P221
  • [6] Modulational instability, solitons and periodic waves in a model of quantum degenerate boson-fermion mixtures
    Belmonte-Beitia, Juan
    Perez-Garcia, Victor M.
    Vekslerchik, Vadym
    [J]. CHAOS SOLITONS & FRACTALS, 2007, 32 (04) : 1268 - 1277
  • [7] Bluman G.W., 1989, Symmetries and differential equations
  • [8] THE 3-DIMENSIONAL WIGNER-POISSON PROBLEM - EXISTENCE, UNIQUENESS AND APPROXIMATION
    BREZZI, F
    MARKOWICH, PA
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 1991, 14 (01) : 35 - 61
  • [9] Theory of Bose-Einstein condensation in trapped gases
    Dalfovo, F
    Giorgini, S
    Pitaevskii, LP
    Stringari, S
    [J]. REVIEWS OF MODERN PHYSICS, 1999, 71 (03) : 463 - 512
  • [10] Davydov A.S., 1985, Solitons in Molecular Systems