Maximal superintegrability of the generalized Kepler-Coulomb system on N-dimensional curved spaces

被引:48
作者
Ballesteros, Angel [1 ]
Herranz, Francisco J. [2 ]
机构
[1] Univ Burgos, Fac Ciencias, Dept Fis, Burgos 09001, Spain
[2] Univ Burgos, Escuela Politecn Super, Dept Fis, Burgos 09001, Spain
关键词
SMORODINSKY-WINTERNITZ POTENTIALS; 2-DIMENSIONAL SPHERE S-2; HYPERBOLIC PLANE H-2; CONSTANT-CURVATURE; POLYNOMIAL DEFORMATIONS; DYNAMICAL SYMMETRIES; HARMONIC-OSCILLATORS; EXACT SOLVABILITY; EUCLIDEAN-SPACE; REALIZATIONS;
D O I
10.1088/1751-8113/42/24/245203
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The superposition of the Kepler-Coulomb potential on the 3D Euclidean space with three centrifugal terms has recently been shown to be maximally superintegrable (Verrier and Evans 2008 J. Math. Phys. 49 022902) by finding an additional (hidden) integral of motion which is quartic in the momenta. In this paper, we present the generalization of this result to the N-dimensional spherical, hyperbolic and Euclidean spaces by making use of a unified symmetry approach that makes use of the curvature parameter. The resulting Hamiltonian, formed by the (curved) Kepler-Coulomb potential together with N centrifugal terms, is shown to be endowed with 2N - 1 functionally independent integrals of the motion: one of them is quartic and the remaining ones are quadratic. The transition from the proper Kepler-Coulomb potential, with its associated quadratic Laplace-Runge-Lenz N-vector, to the generalized system is fully described. The role of spherical, nonlinear (cubic) and coalgebra symmetries in all these systems is highlighted.
引用
收藏
页数:12
相关论文
共 37 条
[1]  
Arnold VI., 1997, Mathematical Aspects of Classical and Celestial Mechanics
[2]   N-dimensional sl(2)-coalgebra spaces with non-constant curvature [J].
Ballesteros, A. ;
Enciso, A. ;
Herranz, F. J. ;
Ragnisco, O. .
PHYSICS LETTERS B, 2007, 652 (5-6) :376-383
[3]  
Ballesteros A, 2004, CRM PROC & LECT NOTE, V37, P1
[4]   Maximal superintegrability on N-dimensional curved spaces [J].
Ballesteros, A ;
Herranz, FJ ;
Santander, M ;
Sanz-Gil, T .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (07) :L93-L99
[5]   Generalized rotational Hamiltonians from nonlinear angular momentum algebras [J].
Ballesteros, A. ;
Civitarese, O. ;
Herranz, F. J. ;
Reboiro, M. .
PHYSICAL REVIEW C, 2007, 75 (04)
[6]   A systematic construction of completely integrable Hamiltonians from coalgebras [J].
Ballesteros, A ;
Ragnisco, O .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (16) :3791-3813
[7]   Universal integrals for superintegrable systems on N-dimensional spaces of constant curvature [J].
Ballesteros, Angel ;
Herranz, Francisco J. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (02) :F51-F59
[8]   Superintegrability on N-dimensional curved spaces: Central potentials, centrifugal terms and monopoles [J].
Ballesteros, Angel ;
Enciso, Alberto ;
Herranz, Francisco J. ;
Ragnisco, Orlando .
ANNALS OF PHYSICS, 2009, 324 (06) :1219-1233
[9]   Central potentials on spaces of constant curvature:: The Kepler problem on the two-dimensional sphere S2 and the hyperbolic plane H2 -: art. no. 052702 [J].
Cariñena, JF ;
Rañada, MF ;
Santander, M .
JOURNAL OF MATHEMATICAL PHYSICS, 2005, 46 (05)
[10]   The relation between polynomial deformations of sl(2, R) and quasi-exact solvability [J].
Debergh, N .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (40) :7109-7121