On-line conveyor belts inspection based on machine vision

被引:99
作者
Yang, Yanli [1 ]
Miao, Changyun [1 ]
Li, Xianguo [1 ]
Mei, Xiuzhuang [1 ]
机构
[1] Tianjin Polytech Univ, Sch Elect & Informat Engn, Tianjin 300387, Peoples R China
来源
OPTIK | 2014年 / 125卷 / 19期
基金
中国国家自然科学基金;
关键词
Machine vision; CCD camera; Conveyor belt; Longitudinal rip; Ethernet; SYSTEM;
D O I
10.1016/j.ijleo.2014.07.070
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Under the background that mining conveyor belts are prone to failure in operation, the on-line fault detection technique based on machine vision for conveyor belts is investigated. High-brightness linear light sources arranged to a vaulted shape provide light for a line-array CCD camera to capture high-quality belt images. A fast image segmentation algorithm is proposed to deal belt images on-line. The algorithm for detecting longitudinal rip and belt deviation which are serious threat to the mine safety production from binary belt images is presented. Then, an on-line visual belt inspection system is developed. The laboratory testing results testify the validity of the visual inspection system. (C) 2014 Elsevier GmbH. All rights reserved.
引用
收藏
页码:5803 / 5807
页数:5
相关论文
共 15 条
  • [1] A machine vision system for estimation of size distributions by weight of limestone particles
    Andersson, Tobias
    Thurley, Matthew J.
    Carlson, Johan E.
    [J]. MINERALS ENGINEERING, 2012, 25 (01) : 38 - 46
  • [2] Fromme C.C., 2003, US Patent, Patent No. [US 20030168317 A1, 20030168317]
  • [3] Embedded Sensor of Forecast Conveyer Belt Breaks
    Guan, Yong
    Zhang, Jie
    Shang, Yuanyuan
    Wu, Minhua
    Liu, Xumin
    [J]. FIFTH INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY, VOL 5, PROCEEDINGS, 2008, : 617 - +
  • [4] A real-time visual inspection system for railway maintenance: Automatic hexagonal-headed bolts detection
    Marino, Francescomaria
    Distante, Arcangelo
    Mazzeo, Pier Luigi
    Stella, Ettore
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART C-APPLICATIONS AND REVIEWS, 2007, 37 (03): : 418 - 428
  • [5] Intelligent automatic overtaking system using vision for vehicle detection
    Milanes, Vicente
    Llorca, David F.
    Villagra, Jorge
    Perez, Joshue
    Fernandez, Carlos
    Parra, Ignacio
    Gonzalez, Carlos
    Sotelo, Miguel A.
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2012, 39 (03) : 3362 - 3373
  • [6] RF identification in the use of belt rip detection
    Nicolay, T
    Treib, A
    Blum, A
    [J]. PROCEEDINGS OF THE IEEE SENSORS 2004, VOLS 1-3, 2004, : 333 - 336
  • [7] THRESHOLD SELECTION METHOD FROM GRAY-LEVEL HISTOGRAMS
    OTSU, N
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1979, 9 (01): : 62 - 66
  • [8] A novel embedded conductive detection system for intelligent conveyor belt monitoring
    Pang, Y.
    Lodewijks, G.
    [J]. 2006 IEEE INTERNATIONAL CONFERENCE ON SERVICE OPERATIONS AND LOGISTICS, AND INFORMATICS (SOLI 2006), PROCEEDINGS, 2006, : 803 - +
  • [9] Quality control of safety belts by machine vision inspection for real-time production
    Ponsa, D
    Benavente, R
    Lumbreras, F
    Martínez, J
    Roca, X
    [J]. OPTICAL ENGINEERING, 2003, 42 (04) : 1114 - 1120
  • [10] Sonka M., 2011, IMAGE PROCESSING ANA, P124