Ni-Al-Cr superalloy as high temperature cathode current collector for advanced thin film Li batteries

被引:17
作者
Filippin, Alejandro N. [1 ]
Lin, Tzu-Ying [1 ]
Rawlence, Michael [1 ]
Zund, Tanja [1 ,2 ]
Kravchyk, Kostiantyn [1 ,2 ]
Sastre-Pellicer, Jordi [1 ]
Haass, Stefan G. [1 ]
Wackerlin, Aneliia [1 ]
Kovalenko, Maksym V. [1 ,2 ]
Buecheler, Stephan [1 ]
机构
[1] Empa Swiss Fed Labs Mat Sci & Technol, Lab Thin Films & Photovolta, Uberlandstr 129, CH-8600 Dubendorf, Switzerland
[2] Swiss Fed Inst Technol, Lab Inorgan Chem, Vladimir Prelog Weg 1, CH-8093 Zurich, Switzerland
来源
RSC ADVANCES | 2018年 / 8卷 / 36期
基金
瑞士国家科学基金会;
关键词
SOLID-STATE BATTERIES; ATOMIC LAYER DEPOSITION; LITHIUM-ION BATTERIES; ELECTRICAL-RESISTIVITY; RECHARGEABLE BATTERIES; ELECTRONIC-PROPERTIES; LICOO2; FILMS; PERFORMANCE; CONDUCTIVITY; STABILITY;
D O I
10.1039/c8ra02461h
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
To obtain full advantage of state-of-the-art solid-state lithium-based batteries, produced by sequential deposition of high voltage cathodes and promising oxide-based electrolytes, the current collector must withstand high temperatures (>600 degrees C) in oxygen atmosphere. This imposes severe restrictions on the choice of materials for the first layer, usually the cathode current collector. It not only must be electrochemically stable at high voltage, but also remain conductive upon deposition and annealing of the subsequent layers without presenting a strong diffusion of its constituent elements into the cathode. A novel cathode current collector based on a Ni-Al-Cr superalloy with target composition Ni0.72Al0.18Cr0.10 is presented here. The suitability of this superalloy as a high voltage current collector was verified by determining its electrochemical stability at high voltage by crystallizing and cycling of LiCoO2 directly onto it.
引用
收藏
页码:20304 / 20313
页数:10
相关论文
共 62 条
[1]   High temperature oxidation of Fe-Al and Fe-Cr-Al alloys: The role of Cr as a chemically active element [J].
Airiskallio, E. ;
Nurmi, E. ;
Heinonen, M. H. ;
Vayrynen, I. J. ;
Kokko, K. ;
Ropo, M. ;
Punkkinen, M. P. J. ;
Pitkanen, H. ;
Alatalo, M. ;
Kollar, J. ;
Johansson, B. ;
Vitos, L. .
CORROSION SCIENCE, 2010, 52 (10) :3394-3404
[2]   Electrical resistivity measurements in Ni-Cr alloys [J].
Al-Aql, AA .
MATERIALS & DESIGN, 2003, 24 (07) :547-550
[3]   Electronic and transport properties of LiCoO2 [J].
Andriyevsky, Bohdan ;
Doll, Klaus ;
Jacob, Timo .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (42) :23412-23420
[4]   Microstructure of LiCoO2 with and without "AIPO4" nanoparticle coating:: Combined STEM and XPS studies [J].
Appapillai, Anjuli T. ;
Mansour, Azzam N. ;
Cho, Jaephil ;
Shao-Horn, Yang .
CHEMISTRY OF MATERIALS, 2007, 19 (23) :5748-5757
[5]   Fabrication and characterization of Li-Mn-Ni-O sputtered thin film high voltage cathodes for Li-ion batteries [J].
Baggetto, Loic ;
Unocic, Raymond R. ;
Dudney, Nancy J. ;
Veith, Gabriel M. .
JOURNAL OF POWER SOURCES, 2012, 211 :108-118
[6]   Thin-film lithium and lithium-ion batteries [J].
Bates, JB ;
Dudney, NJ ;
Neudecker, B ;
Ueda, A ;
Evans, CD .
SOLID STATE IONICS, 2000, 135 (1-4) :33-45
[7]   Preferred orientation of polycrystalline LiCoO2 films [J].
Bates, JB ;
Dudney, NJ ;
Neudecker, BJ ;
Hart, FX ;
Jun, HP ;
Hackney, SA .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2000, 147 (01) :59-70
[8]   Structure-related intercalation behaviour of LiCoO2 films [J].
Bouwman, PJ ;
Boukamp, BA ;
Bouwmeester, HJM ;
Notten, PHL .
SOLID STATE IONICS, 2002, 152 :181-188
[9]  
Cathcart J. V., 1984, MATER RES SOC S P, V39, P445
[10]  
Chen M., 2015, APPL MECH MAT, V723, P664