MULTILAYER FORMATION AND EVAPORATION OF DEUTERATED ICES IN PRESTELLAR AND PROTOSTELLAR CORES

被引:101
作者
Taquet, Vianney [1 ,2 ]
Charnley, Steven B. [1 ,2 ]
Sipila, Olli [3 ]
机构
[1] NASA, Goddard Space Flight Ctr, Astrochem Lab, Greenbelt, MD 20770 USA
[2] NASA, Goddard Space Flight Ctr, Goddard Ctr Astrobiol, Greenbelt, MD 20770 USA
[3] Univ Helsinki, Dept Phys, FI-00014 Helsinki, Finland
基金
芬兰科学院;
关键词
astrochemistry; ISM: abundances; ISM: molecules; stars: formation; DENSE INTERSTELLAR CLOUDS; SOLAR-TYPE PROTOSTARS; WATER DEUTERIUM FRACTIONATION; COMPLEX ORGANIC-MOLECULES; GRAIN SURFACE-CHEMISTRY; STAR-FORMING REGIONS; LOW-MASS PROTOSTARS; O1; HALE-BOPP; IRAS; 16293-2422; INFALL MOTIONS;
D O I
10.1088/0004-637X/791/1/1
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Extremely large deuteration of several molecules has been observed toward prestellar cores and low-mass protostars for a decade. New observations performed toward low-mass protostars suggest that water presents a lower deuteration in the warm inner gas than in the cold external envelope. We coupled a gas-grain astrochemical model with a one-dimensional model of a collapsing core to properly follow the formation and the deuteration of interstellar ices as well as their subsequent evaporation in the low-mass protostellar envelopes with the aim of interpreting the spatial and temporal evolutions of their deuteration. The astrochemical model follows the formation and the evaporation of ices with a multilayer approach and also includes a state-of-the-art deuterated chemical network by taking the spin states of H-2 and light ions into account. Because of their slow formation, interstellar ices are chemically heterogeneous and show an increase of their deuterium fractionation toward the surface. The differentiation of the deuteration in ices induces an evolution of the deuteration within protostellar envelopes. The warm inner region is poorly deuterated because it includes the whole molecular content of ices, while the deuteration predicted in the cold external envelope scales with the highly deuterated surface of ices. We are able to reproduce the observed evolution of water deuteration within protostellar envelopes, but we are still unable to predict the super-high deuteration observed for formaldehyde and methanol. Finally, the extension of this study to the deuteration of complex organics, important for the prebiotic chemistry, shows good agreement with the observations, suggesting that we can use the deuteration to retrace their mechanisms and their moments of formation.
引用
收藏
页数:20
相关论文
共 140 条
[1]   Desorption of CO and O2 interstellar ice analogs [J].
Acharyya, K. ;
Fuchs, G. W. ;
Fraser, H. J. ;
van Dishoeck, E. F. ;
Linnartz, H. .
ASTRONOMY & ASTROPHYSICS, 2007, 466 (03) :1005-U169
[2]   Molecular evolution in collapsing prestellar cores [J].
Aikawa, Y ;
Ohashi, N ;
Inutsuka, S ;
Herbst, E ;
Takakuwa, S .
ASTROPHYSICAL JOURNAL, 2001, 552 (02) :639-653
[3]   FROM PRESTELLAR TO PROTOSTELLAR CORES. II. TIME DEPENDENCE AND DEUTERIUM FRACTIONATION [J].
Aikawa, Y. ;
Wakelam, V. ;
Hersant, F. ;
Garrod, R. T. ;
Herbst, E. .
ASTROPHYSICAL JOURNAL, 2012, 760 (01)
[4]   CHEMODYNAMICAL DEUTERIUM FRACTIONATION IN THE EARLY SOLAR NEBULA: THE ORIGIN OF WATER ON EARTH AND IN ASTEROIDS AND COMETS [J].
Albertsson, T. ;
Semenov, D. ;
Henning, Th. .
ASTROPHYSICAL JOURNAL, 2014, 784 (01)
[5]   NEW EXTENDED DEUTERIUM FRACTIONATION MODEL: ASSESSMENT AT DENSE ISM CONDITIONS AND SENSITIVITY ANALYSIS [J].
Albertsson, T. ;
Semenov, D. A. ;
Vasyunin, A. I. ;
Henning, Th. ;
Herbst, E. .
ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2013, 207 (02)
[6]   Photodesorption of water ice A molecular dynamics study [J].
Andersson, S. ;
van Dishoeck, E. F. .
ASTRONOMY & ASTROPHYSICS, 2008, 491 (03) :907-916
[7]  
[Anonymous], SURF SCI REP
[8]  
Avgul N.N., 1970, CHEM PHYS CARBON
[9]   CANDIDATE SOLAR-TYPE PROTOSTARS IN NEARBY MOLECULAR CLOUD CORES [J].
BEICHMAN, CA ;
MYERS, PC ;
EMERSON, JP ;
HARRIS, S ;
MATHIEU, R ;
BENSON, PJ ;
JENNINGS, RE .
ASTROPHYSICAL JOURNAL, 1986, 307 (01) :337-349
[10]   Chemical evolution in preprotostellar and protostellar cores [J].
Bergin, EA ;
Langer, WD .
ASTROPHYSICAL JOURNAL, 1997, 486 (01) :316-328