Oscillation criteria for perturbed nonlinear dynamic equations

被引:41
作者
Bohner, M [1 ]
Saker, SH
机构
[1] Univ Missouri, Dept Math & Stat, Rolla, MO 65401 USA
[2] Mansoura Univ, Dept Math, Mansoura 35516, Egypt
关键词
oscillation; second-order nonlinear dynamic equation; time scale; Riccati transformation technique; positive solution;
D O I
10.1016/j.mcm.2004.03.002
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we discuss the oscillatory behavior of a certain nonlinear perturbed dynamic equation on time scales. We establish some new oscillation criteria for such dynamic equations and supply examples. (C) 2004 Elsevier Ltd. All rights reserved,
引用
收藏
页码:249 / 260
页数:12
相关论文
共 14 条
[1]   Oscillation results for a dynamic equation on a time scale [J].
Akin, E ;
Erbe, L ;
Peterson, A ;
Kaymakçalan, B .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2001, 7 (06) :793-810
[2]  
[Anonymous], 2000, OSCILLATION THEORY D, DOI DOI 10.1007/978-94-015-9401-1
[3]   Oscillation of second order nonlinear dynamic equations on time scales [J].
Bohner, M ;
Saker, SH .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2004, 34 (04) :1239-1254
[4]   An oscillation theorem for discrete eigenvalue problems [J].
Bohner, M ;
Dosly, O ;
Kratz, W .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2003, 33 (04) :1233-1260
[5]  
Bohner M, 2003, DYN SYST APPL, V12, P45
[6]  
Bohner M., 2001, Dynamic Equations on Time Scales: AnIntroduction With Applications, DOI DOI 10.1007/978-1-4612-0201-1
[7]  
Bohner M., 2003, Advances in Dynamics Equations on Time Scales
[8]   A necessary and sufficient condition for oscillation of the Sturm-Liouville dynamic equation on time scales [J].
Dosly, O ;
Hilger, S .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2002, 141 (1-2) :147-158
[9]   Positive solutions for a nonlinear differential equation on a measure chain [J].
Erbe, L ;
Peterson, A .
MATHEMATICAL AND COMPUTER MODELLING, 2000, 32 (5-6) :571-585
[10]   Oscillation criteria for second-order nonlinear dynamic equations on time scales [J].
Erbe, L ;
Peterson, A ;
Saker, SH .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2003, 67 :701-714