A mutation in an Arabidopsis ribose 5-phosphate isomerase reduces cellulose synthesis and is rescued by exogenous uridine

被引:33
作者
Howles, Paul A.
Birch, Rosemary J.
Collings, David A.
Gebbie, Leigh K.
Hurley, Ursula A.
Hocart, Charles H.
Arioli, Tony
Williamson, Richard E.
机构
[1] Australian Natl Univ, Res Sch Biol Sci, Plant Cell Biol Grp, Canberra, ACT 2601, Australia
[2] Bayer Biosci NV Belgium, Bayer Corpsci, B-9052 Ghent, Belgium
关键词
ribose 5-phosphate isomerase; cellulose; radial swelling mutant; cell wall; pyrimidine biosynthesis; Arabidopsis thaliana;
D O I
10.1111/j.1365-313X.2006.02902.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The Arabidopsis radial swelling mutant rsw10 showed ballooning of root trichoblasts, a lower than wild-type level of cellulose and altered levels of some monosaccharides in non-cellulosic polysaccharides. Map-based cloning showed that the mutated gene (At1g71100) encodes a ribose 5-phosphate isomerase (RPI) and that the rsw10 mutation replaces a conserved glutamic acid residue with lysine. Although RPI is intimately involved with many biochemical pathways, media supplementation experiments suggest that the visible phenotype results from a defect in the production of pyrimidine-based sugar-nucleotide compounds, most likely uridine 5'-diphosphate-glucose, the presumed substrate of cellulose synthase. Two of three RPI sequences in the nuclear genome are cytoplasmic, while the third has a putative chloroplast transit sequence. The sequence encoding both cytoplasmic enzymes could complement the mutation when expressed behind the CaMV 35S promoter, while fusion of the RSW10 promoter region to the GUS reporter gene established that the gene is expressed in many aerial tissues as well as the roots. The prominence of the rsw10 phenotype in roots probably reflects RSW10 being the only cytosolic RPI in this tissue and the gene encoding the plastid RPI being relatively weakly expressed. We could not, however, detect a decrease in total RPI activity in root extracts. The rsw10 phenotype is prominent near the root tip where cells undergo division, endoreduplication and cell expansion and so are susceptible to a restriction in de novo pyrimidine production. The two cytosolic RPIs probably arose in an ancient duplication event, their present expression patterns representing subfunctionalization of the expression of the original ancestral gene.
引用
收藏
页码:606 / 618
页数:13
相关论文
共 56 条
[1]   TOPOGRAPHY OF GLYCOSYLATION REACTIONS IN THE ENDOPLASMIC-RETICULUM [J].
ABEIJON, C ;
HIRSCHBERG, CB .
TRENDS IN BIOCHEMICAL SCIENCES, 1992, 17 (01) :32-36
[2]   Molecular analysis of cellulose biosynthesis in Arabidopsis [J].
Arioli, T ;
Peng, LC ;
Betzner, AS ;
Burn, J ;
Wittke, W ;
Herth, W ;
Camilleri, C ;
Höfte, H ;
Plazinski, J ;
Birch, R ;
Cork, A ;
Glover, J ;
Redmond, J ;
Williamson, RE .
SCIENCE, 1998, 279 (5351) :717-720
[3]   Extensive feature detection of N-terminal protein sorting signals [J].
Bannai, H ;
Tamada, Y ;
Maruyama, O ;
Nakai, K ;
Miyano, S .
BIOINFORMATICS, 2002, 18 (02) :298-305
[4]   ROOT MORPHOLOGY MUTANTS IN ARABIDOPSIS-THALIANA [J].
BASKIN, TI ;
BETZNER, AS ;
HOGGART, R ;
CORK, A ;
WILLIAMSON, RE .
AUSTRALIAN JOURNAL OF PLANT PHYSIOLOGY, 1992, 19 (04) :427-437
[5]   BINARY AGROBACTERIUM VECTORS FOR PLANT TRANSFORMATION [J].
BEVAN, M .
NUCLEIC ACIDS RESEARCH, 1984, 12 (22) :8711-8721
[6]   A recent polyploidy superimposed on older large-scale duplications in the Arabidopsis genome [J].
Blanc, G ;
Hokamp, K ;
Wolfe, KH .
GENOME RESEARCH, 2003, 13 (02) :137-144
[7]   Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events [J].
Bowers, JE ;
Chapman, BA ;
Rong, JK ;
Paterson, AH .
NATURE, 2003, 422 (6930) :433-438
[8]   The Arabidopsis thaliana ABSCISIC ACID-INSENSITIVE8 locus encodes a novel protein mediating abscisic acid and sugar responses essential for growth [J].
Brocard-Gifford, I ;
Lynch, TJ ;
Garcia, ME ;
Malhotra, B ;
Finkelstein, RR .
PLANT CELL, 2004, 16 (02) :406-421
[9]  
Buchanan BB., 2015, Biochemistry and Molecular Biology of Plants
[10]   The cellulose-deficient Arabidopsis mutant rsw3 is defective in a gene encoding a putative glucosidase II, an enzyme processing N-glycans during ER quality control [J].
Burn, JE ;
Hurley, UA ;
Birch, RJ ;
Arioli, T ;
Cork, A ;
Williamson, RE .
PLANT JOURNAL, 2002, 32 (06) :949-960