Catalytic Membrane Reactor Model as a Laboratory for Pattern Emergence in Reaction-diffusion-advection Media

被引:0
|
作者
Yochelis, Arik [1 ,2 ]
机构
[1] Ben Gurion Univ Negev, BIDR, SIDE ER, Dept Solar Energy & Environm Phys, IL-8499000 Midreshet Ben Gurion, Israel
[2] Ben Gurion Univ Negev, Dept Phys, IL-8410501 Beer Sheva, Israel
关键词
Reaction-diffusion-advection; pattern formation; auto-catalysis; bifurcations; spatial dynamics; FLOW-DISTRIBUTED OSCILLATIONS; DIFFERENTIAL-FLOW; ELECTRIC-FIELD; CONVECTIVE INSTABILITIES; INTRACELLULAR-TRANSPORT; SPATIOTEMPORAL PATTERNS; STATIONARY PATTERNS; SELF-ORGANIZATION; CHEMICAL WAVES; ABSOLUTE;
D O I
10.1002/ijch.201700145
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Reaction-diffusion-advection media on semi-infinite domains are important in chemical, biological and ecological applications, yet remain a challenge for pattern formation theory. To demonstrate the rich emergence of nonlinear traveling waves and stationary periodic states, we review results obtained using a membrane reactor as a case model. Such solutions coexist in overlapping parameter regimes and their temporal stability is determined by the boundary conditions which either preserve or destroy the translational symmetry, i.e., selection mechanisms under realistic Danckwerts boundary conditions. A brief outlook is given at the end.
引用
收藏
页码:722 / 732
页数:11
相关论文
共 50 条
  • [1] Dynamics and pattern formation in a reaction-diffusion-advection mussel–algae model
    Jinfeng Wang
    Xue Tong
    Yongli Song
    Zeitschrift für angewandte Mathematik und Physik, 2022, 73
  • [2] DYNAMICS OF A REACTION-DIFFUSION-ADVECTION MODEL WITH TWO SPECIES COMPETING IN A FLOW REACTOR
    Zhang, Wang
    Nie, Hua
    Wu, Jianhua
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2023, 28 (06): : 3453 - 3486
  • [3] Dynamics and pattern formation in a reaction-diffusion-advection mussel-algae model
    Wang, Jinfeng
    Tong, Xue
    Song, Yongli
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2022, 73 (03):
  • [4] Experimental steady pattern formation in reaction-diffusion-advection systems
    Míguez, DG
    Satnoianu, RA
    Muñuzuri, AP
    PHYSICAL REVIEW E, 2006, 73 (02):
  • [6] A nonlocal reaction-diffusion-advection model with free boundaries
    Tang, Yaobin
    Dai, Binxiang
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2024, 75 (04):
  • [7] Evolution of conditional dispersal: a reaction-diffusion-advection model
    Chen, Xinfu
    Hambrock, Richard
    Lou, Yuan
    JOURNAL OF MATHEMATICAL BIOLOGY, 2008, 57 (03) : 361 - 386
  • [8] On One Model Problem for the Reaction-Diffusion-Advection Equation
    Davydova, M. A.
    Zakharova, S. A.
    Levashova, N. T.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2017, 57 (09) : 1528 - 1539
  • [9] Stability and Pattern Formation in a General Class of Reaction-Diffusion-Advection System
    Maimaiti, Yimamu
    Yang, Wenbin
    ACTA APPLICANDAE MATHEMATICAE, 2023, 185 (01)
  • [10] Stability and Pattern Formation in a General Class of Reaction-Diffusion-Advection System
    Yimamu Maimaiti
    Wenbin Yang
    Acta Applicandae Mathematicae, 2023, 185