Role of Involutive Criteria in Computing Boolean Grobner Bases

被引:0
|
作者
Gerdt, V. P. [1 ]
Zinin, M. V. [1 ]
机构
[1] Joint Inst Nucl Res, Informat Technol Lab, Dubna 141980, Moscow Oblast, Russia
基金
俄罗斯基础研究基金会;
关键词
19;
D O I
10.1134/S0361768809020042
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper, effectiveness of using four criteria in an involutive algorithm based on the Pommaret division for construction of Boolean Grobner bases is studied. One of the results of this study is the observation that the role of the criteria in computations in Boolean rings is much less than that in computations in an ordinary ring of polynomials over the field of integers. Another conclusion of this study is that the efficiency of the second and/or third criteria is higher than that of the two others.
引用
收藏
页码:90 / 97
页数:8
相关论文
共 50 条
  • [31] A HYBRID GROBNER BASES APPROACH TO COMPUTING POWER INTEGRAL BASES
    Robertson, L.
    Russell, R.
    ACTA MATHEMATICA HUNGARICA, 2015, 147 (02) : 427 - 437
  • [32] ON THE COMPLEXITY OF COMPUTING CRITICAL POINTS WITH GROBNER BASES
    Spaenlehauer, Pierre-Jean
    SIAM JOURNAL ON OPTIMIZATION, 2014, 24 (03) : 1382 - 1401
  • [33] Computing homology using generalized Grobner bases
    Hall, Becky Eide
    JOURNAL OF SYMBOLIC COMPUTATION, 2013, 54 : 59 - 71
  • [34] Opal: A system for computing noncommutative Grobner bases
    Green, EL
    Heath, LS
    Keller, BJ
    REWRITING TECHNIQUES AND APPLICATIONS, 1997, 1232 : 331 - 334
  • [35] Computing Boolean Border Bases
    Horacek, Jan
    Kreuzer, Martin
    Ekossono, Ange-Salome Messeng
    PROCEEDINGS OF 2016 18TH INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND NUMERIC ALGORITHMS FOR SCIENTIFIC COMPUTING (SYNASC), 2016, : 465 - 472
  • [36] Towards a certified and efficient computing of Grobner bases
    Jorge, JS
    Gulías, VM
    Freire, JL
    Sánchez, JJ
    COMPUTER AIDED SYSTEMS THEORY - EUROCAST 2005, 2005, 3643 : 111 - 120
  • [37] COMPUTING GROBNER BASES AND INVARIANTS OF THE SYMMETRIC ALGEBRA
    La Barbiera, M.
    Restuccia, G.
    MISKOLC MATHEMATICAL NOTES, 2017, 17 (02) : 777 - 789
  • [38] Computing generic bivariate Grobner bases with MATHEMAGIX
    Larrieu, Robin
    ACM COMMUNICATIONS IN COMPUTER ALGEBRA, 2019, 53 (02): : 41 - 44
  • [39] On computing Grobner bases in rings of differential operators
    Ma XiaoDong
    Sun Yao
    Wang DingKang
    SCIENCE CHINA-MATHEMATICS, 2011, 54 (06) : 1077 - 1087
  • [40] Computing Grobner Bases within Linear Algebra
    Suzuki, Akira
    COMPUTER ALGEBRA IN SCIENTIFIC COMPUTING, PROCEEDINGS, 2009, 5743 : 310 - 321