Role of Involutive Criteria in Computing Boolean Grobner Bases

被引:0
|
作者
Gerdt, V. P. [1 ]
Zinin, M. V. [1 ]
机构
[1] Joint Inst Nucl Res, Informat Technol Lab, Dubna 141980, Moscow Oblast, Russia
基金
俄罗斯基础研究基金会;
关键词
19;
D O I
10.1134/S0361768809020042
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper, effectiveness of using four criteria in an involutive algorithm based on the Pommaret division for construction of Boolean Grobner bases is studied. One of the results of this study is the observation that the role of the criteria in computations in Boolean rings is much less than that in computations in an ordinary ring of polynomials over the field of integers. Another conclusion of this study is that the efficiency of the second and/or third criteria is higher than that of the two others.
引用
收藏
页码:90 / 97
页数:8
相关论文
共 50 条
  • [21] Computing inhomogeneous Grobner bases
    Bigatti, A. M.
    Caboara, M.
    Robbiano, L.
    JOURNAL OF SYMBOLIC COMPUTATION, 2011, 46 (05) : 498 - 510
  • [22] Computation of Involutive and Grobner Bases Using the Tableau Representation of Polynomials
    Yanovich, D. A.
    PROGRAMMING AND COMPUTER SOFTWARE, 2020, 46 (02) : 162 - 166
  • [23] A NEW FRAMEWORK FOR COMPUTING GROBNER BASES
    Gao, Shuhong
    Volny, Frank
    Wang, Mingsheng
    MATHEMATICS OF COMPUTATION, 2015, 85 (297) : 449 - 465
  • [24] Some criteria for Grobner bases and their applications
    Liu, Jinwang
    Li, Dongmei
    Liu, Weijun
    JOURNAL OF SYMBOLIC COMPUTATION, 2019, 92 : 15 - 21
  • [25] COMPUTING GROBNER BASES ASSOCIATED WITH LATTICES
    Alvarez-Barrientos, Ismara
    Borges-Quintana, Mijail
    Angel Borges-Trenard, Miguel
    Panario, Daniel
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2016, 10 (04) : 851 - 860
  • [26] FGb: A Library for Computing Grobner Bases
    Faugere, Jean-Charles
    MATHEMATICAL SOFTWARE - ICMS 2010, 2010, 6327 : 84 - 87
  • [27] Polynomial selection for computing Grobner bases
    Ito, Takuma
    Nitta, Atsushi
    Hoshi, Yuta
    Shinohara, Naoyuki
    Uchiyama, Shigenori
    JSIAM LETTERS, 2021, 13 : 72 - 75
  • [28] Modular algorithms for computing Grobner bases
    Arnold, EA
    JOURNAL OF SYMBOLIC COMPUTATION, 2003, 35 (04) : 403 - 419
  • [29] Computing Comprehensive Grobner Systems and Comprehensive Grobner Bases Simultaneously
    Kapur, Deepak
    Sun, Yao
    Wang, Dingkang
    ISSAC 2011: PROCEEDINGS OF THE 36TH INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND ALGEBRAIC COMPUTATION, 2011, : 193 - 200
  • [30] A Survey on Algorithms for Computing Comprehensive Grobner Systems and Comprehensive Grobner Bases
    Lu Dong
    Sun Yao
    Wang Dingkang
    JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2019, 32 (01) : 234 - 255