Risk theory with a nonlinear dividend barrier

被引:59
作者
Albrecher, H [1 ]
Kainhofer, R [1 ]
机构
[1] Graz Univ Technol, Dept Math, A-8010 Graz, Austria
关键词
classical risk process; dividend barrier strategies; survival probability; stochastic simulation; Quasi-Monte Carlo techniques;
D O I
10.1007/s00607-001-1447-4
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In the framework of classical risk theory we investigate a surplus process in the presence of a nonlinear dividend barrier and derive equations for two characteristics of such a process, the probability of survival and the expected sum of discounted dividend payments. Number-theoretic solution techniques are developed for approximating these quantities and numerical illustrations are given for exponential claim sizes and a parabolic dividend barrier.
引用
收藏
页码:289 / 311
页数:23
相关论文
共 26 条
[1]  
ALBRECHER H, 2000, SCHWEIZ AKTUARVER MI, V2, P115
[2]  
ALEGRE A, 1999, P 3 INT C INS MATH E
[3]  
ALLEN F, 1999, 1598 WHART SCH
[4]  
[Anonymous], 1997, LECT NOTES MATH
[5]  
Asmussen S., 2000, Ruin probabilities
[6]  
BALI R, 1999, J FINANCIAL ED, V25, P14
[7]  
BOOGAERT P, 1988, SCANDINAVIAN ACTUARI, V4, P231
[8]  
Buhlmann H., 1970, MATH METHODS RISK TH
[9]  
Caflisch R. E., 1998, Acta Numerica, V7, P1, DOI 10.1017/S0962492900002804
[10]  
de Finetti B., 1957, Transactions of the XVth International Congress of Actuaries, V2, P433