Analysis of noise in time-frequency distributions

被引:19
作者
Stankovic, L [1 ]
机构
[1] Univ Montenegro, Elektrotehn Fak, YU-81000 Podgorica, Monetegro, Yugoslavia
关键词
eigenvalues and eigenfunctions; noise; signal representations; spectral analysis; time-frequency analysis; Wigner distribution;
D O I
10.1109/LSP.2002.803409
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Exact expressions for the quadratic distributions' variance of signals corrupted with white stationary, white non-stationary, and colored stationary noise are derived. It has been,shown that the signal-dependent part of variance is closely related to the nonnoisy distribution values.
引用
收藏
页码:286 / 289
页数:4
相关论文
共 12 条
[1]   Minimum variance time-frequency distribution kernels for signals in additive noise [J].
Amin, MG .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1996, 44 (09) :2352-2356
[2]   SPECTRAL DECOMPOSITION OF TIME-FREQUENCY DISTRIBUTION KERNELS [J].
AMIN, MG .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1994, 42 (05) :1156-1165
[3]  
[Anonymous], TIME FREQUENCY SIGNA
[4]  
Cohen L., 1995, TIME FREQUENCY ANAL
[5]   KERNEL DECOMPOSITION OF TIME-FREQUENCY DISTRIBUTIONS [J].
CUNNINGHAM, GS ;
WILLIAMS, WJ .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1994, 42 (06) :1425-1442
[6]   Statistical properties of the pseudo-Wigner-Ville representation of normal random processes [J].
Duvaut, P ;
Declercq, D .
SIGNAL PROCESSING, 1999, 75 (01) :93-98
[7]  
MARTIN W, 1997, WIGNER DISTRIBUTION, P212
[8]  
NUTALL AH, 1989, SIGNAL PROCESSING ST
[9]   Toeplitz and Hankel kernels for estimating time-varying spectra of discrete-time random processes [J].
Scharf, LL ;
Friedlander, B .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2001, 49 (01) :179-189
[10]   The Wigner distribution of noisy signals with adaptive time-frequency varying window [J].
Stankovic, L ;
Katkovnik, V .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1999, 47 (04) :1099-1108