Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam

被引:929
|
作者
Garcés-Chávez, V [1 ]
McGloin, D [1 ]
Melville, H [1 ]
Sibbett, W [1 ]
Dholakia, K [1 ]
机构
[1] Univ St Andrews, Sch Phys & Astron, St Andrews KY16 9SS, Fife, Scotland
基金
英国医学研究理事会; 英国工程与自然科学研究理事会;
关键词
D O I
10.1038/nature01007
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Optical tweezers(1) are commonly used for manipulating microscopic particles, with applications in cell manipulation (2), colloid research(3-5), manipulation of micromachines(6) and studies of the properties of light beams(7). Such tweezers work by the transfer of momentum from a tightly focused laser to the particle, which refracts and scatters the light and distorts the profile of the beam. The forces produced by this process cause the particle to be trapped near the beam focus. Conventional tweezers use gaussian light beams, which cannot trap particles in multiple locations more than a few micrometres apart in the axial direction, because of beam distortion by the particle and subsequent strong divergence from the focal plane. Bessel beams(8,9), however, do not diverge and, furthermore, if part of the beam is obstructed or distorted the beam reconstructs itself after a characteristic propagation distance(10). Here we show how this reconstructive property may be utilized within optical tweezers to trap particles in multiple, spatially separated sample cells with a single beam. Owing to the diffractionless nature of the Bessel beam, secondary trapped particles can reside in a second sample cell far removed (similar to3 mm) from the first cell. Such tweezers could be used for the simultaneous study of identically prepared ensembles of colloids and biological matter, and potentially offer enhanced control of 'lab-on-a-chip' and optically driven microstructures.
引用
收藏
页码:145 / 147
页数:3
相关论文
共 50 条
  • [1] Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam
    V. Garcés-Chávez
    D. McGloin
    H. Melville
    W. Sibbett
    K. Dholakia
    Nature, 2002, 419 : 145 - 147
  • [2] Self-reconstructing spatiotemporal light bullets
    Grazuleviciute, I.
    Tamosauskas, G.
    Jukna, V.
    Couairon, A.
    Faccio, D.
    Dubietis, A.
    OPTICS EXPRESS, 2014, 22 (25): : 30613 - 30622
  • [3] Holographic shaping of generalized self-reconstructing light beams
    Thomson, Laura C.
    Courtial, Johannes
    OPTICS COMMUNICATIONS, 2008, 281 (05) : 1217 - 1221
  • [4] Light needles in scattering media using self-reconstructing beams and the STED principle
    Gohn-Kreuz, Cristian
    Rohrbach, Alexander
    OPTICA, 2017, 4 (09): : 1134 - 1142
  • [5] Diffraction-free, Self-reconstructing Bessel beam generation using thermal nonlinear optical effect
    Zhang, Q.
    Cheng, X. M.
    Ren, Z. Y.
    Chen, H. W.
    He, B.
    Zhang, Y.
    Bai, J. T.
    2018 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2018,
  • [6] Diffraction-free, self-reconstructing Bessel beam generation using thermal nonlinear optical effect
    Zhang, Q.
    Cheng, X. M.
    Chen, H. W.
    He, B.
    Ren, Z. Y.
    Zhang, Y.
    Bai, J. T.
    APPLIED PHYSICS LETTERS, 2017, 111 (16)
  • [7] Light-sheet generation in inhomogeneous media using self-reconstructing beams and the STED-principle
    Gohn-Kreuz, Cristian
    Rohrbach, Alexander
    OPTICS EXPRESS, 2016, 24 (06): : 5855 - 5865
  • [8] A line scanned light-sheet microscope with phase shaped self-reconstructing beams
    Fahrbach, Florian O.
    Rohrbach, Alexander
    OPTICS EXPRESS, 2010, 18 (23): : 24229 - 24244
  • [9] Optical micromanipulation using a Bessel light beam
    Arlt, J
    Garces-Chavez, V
    Sibbett, W
    Dholakia, K
    OPTICS COMMUNICATIONS, 2001, 197 (4-6) : 239 - 245
  • [10] Self-reconstructing Bessel beam created by two-photon-polymerized micro-axicon for light-sheet fluorescence microscopy
    Li, Shufan
    Jiao, Jiannan
    Boonruangkan, Jeeranan
    Toh, Hui Ting
    An, Jianing
    Su, Pei-Chen
    Sandeep, C. S. Suchand
    Kim, Young-Jin
    RESULTS IN PHYSICS, 2021, 24