Data-driven techniques for fault detection in anaerobic digestion process

被引:61
|
作者
Kazemi, Pezhman [1 ]
Bengoa, Christophe [1 ]
Steyer, Jean-Philippe [2 ]
Giralt, Jaume [1 ]
机构
[1] Univ Rovira & Virgili, Dept Engn Quim, Avda Paisos Catalans 26, Tarragona 43007, Spain
[2] Univ Montpellier, LBE, INRA, 102 Ave Etangs, F-11100 Narbonne, France
关键词
BSM2; Bootstrapping; Anaerobic digestion; Soft-sensor; Neural network; CUSUM chart; BENCHMARK SIMULATION-MODEL; WASTE-WATER; NEURAL-NETWORK; DIAGNOSIS; PREDICTION; SEARCH; SIZE;
D O I
10.1016/j.psep.2020.12.016
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Anaerobic digestion (AD) is an appropriate process for bio-energy (biogas) production from waste and wastewater receiving a high level of attention at both academic and industrial scale due to increasing public awareness regarding environmental protection and energy security. Monitoring such processes is an imperative task to ensure optimized operation and prevent failures and serious consequences during the operation of the plant. To fulfill this task, a practical data-driven framework for fault detection in AD is proposed and validated on a simulated data set obtained using the benchmark simulation model No.2 (BSM2) from the International Water Association (IWA). The proposed framework is based on data-driven soft-sensors predicting total volatile fatty acids (VFA), mainly consisting of acetate, propionate, valerate and butyrate concentrations inside the digester. The VFA concentration is considered because it does not only reflect the current process health, but it is also sensitive to the incoming feeding imbalances. VFA soft-sensors using different advanced techniques such as support vector machine (SVM), extreme learning machine (ELM) and ensemble of neural network (ENN) are tested and compared in terms of accuracy and fault detection (FD) robustness. A principal component analysis (PCA) model was also developed to compare the proposed approaches with the traditional FD method. By applying soft-sensors, the residual signal, i.e., the difference between estimated and measured VFA values can be generated. This residual signal can then be used in combination with univariate statistical control charts to detect the faults. A comparison of the proposed FD framework with PCA method clearly demonstrates the over performance and feasibility of the proposed monitoring framework. (C) 2020 Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:905 / 915
页数:11
相关论文
共 50 条
  • [21] Data-driven bounded-error fault detection
    Suarez Fabrega, Antonio J.
    Bravo Caro, Jose Manuel
    Abad Herrera, Pedro J.
    Gasca, Rafael M.
    INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2014, 28 (12) : 1299 - 1324
  • [22] Data-driven fault detection and isolation of nonlinear systems using deep learning for Koopman operator
    Bakhtiaridoust, Mohammadhosein
    Yadegar, Meysam
    Meskin, Nader
    ISA TRANSACTIONS, 2023, 134 : 200 - 211
  • [23] Data-Driven Fault Detection for Vehicle Lateral Dynamics
    Wang Yulei
    Yuan Jingxin
    Chen Hong
    PROCEEDINGS OF THE 36TH CHINESE CONTROL CONFERENCE (CCC 2017), 2017, : 7269 - 7274
  • [24] Data-Driven Modeling Methods and Techniques for Pharmaceutical Processes
    Dong, Yachao
    Yang, Ting
    Xing, Yafeng
    Du, Jian
    Meng, Qingwei
    PROCESSES, 2023, 11 (07)
  • [25] Data-Driven Fault Compensation Tracking Control for Coupled Wastewater Treatment Process
    Du, Peihao
    Zhong, Weimin
    Peng, Xin
    Li, Linlin
    Li, Zhi
    IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2023, 10 (01) : 294 - 297
  • [26] Data-driven Sensor Fault Estimation for the Wind Turbine Systems
    Rahimilarki, Reihane
    Gao, Zhiwei
    Jin, Nanlin
    Binns, Richard
    Zhang, Aihua
    2020 IEEE 29TH INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS (ISIE), 2020, : 1211 - 1216
  • [27] From Model, Signal to Knowledge: A Data-Driven Perspective of Fault Detection and Diagnosis
    Dai, Xuewu
    Gao, Zhiwei
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2013, 9 (04) : 2226 - 2238
  • [28] Data-Driven Fault Detection in Industrial Batch Processes Based on a Stochastic Hybrid Process Model
    Windmann, Stefan
    IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2022, 19 (04) : 3888 - 3902
  • [29] Data-driven approach for fault detection and isolation in nonlinear system
    Kallas, Maya
    Mourot, Gilles
    Maquin, Didier
    Ragot, Jose
    INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2018, 32 (11) : 1569 - 1590
  • [30] An approach for robust data-driven fault detection with industrial application
    Yin, Shen
    Wang, Guang
    39TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY (IECON 2013), 2013, : 3317 - 3322