Exact Optimal Confidence Intervals for Hypergeometric Parameters

被引:15
作者
Wang, Weizhen [1 ,2 ]
机构
[1] Beijing Univ Technol, Coll Appl Sci, Beijing 100124, Peoples R China
[2] Wright State Univ, Dept Math & Stat, Dayton, OH 45435 USA
关键词
Capture-recapture sampling; Coverage probability; One-sided interval; Set inclusion; Two-sided interval; ESTIMATING ANIMAL ABUNDANCE; BINOMIAL PROPORTION; STATISTICAL-INFERENCE; APPROXIMATE; ESTIMATORS; VARIANCE; BIAS;
D O I
10.1080/01621459.2014.966191
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For a hypergeometric distribution, denoted by Hyper(M, N, n), where N is the population size, M is the number of population units with some attribute, and n is the given sample size, there are two parametric cases: (i) N is unknown and M is given; (ii) M is unknown and N is given. For each case, we first show that the minimum coverage probability of commonly used approximate intervals is much smaller than the nominal level for any n, then we provide exact smallest lower and upper one-sided confidence intervals and an exact admissible two-sided confidence interval, a complete set of solutions, for each parameter. Supplementary materials for this article are available online.
引用
收藏
页码:1491 / 1499
页数:9
相关论文
共 50 条
  • [31] Robust Confidence Intervals for the Bernoulli Parameter
    Song, Wheyming Tina
    Chang, Chia-Jung
    Liu, Sin-Long
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2009, 38 (19) : 3544 - 3560
  • [32] The fallacy of placing confidence in confidence intervals
    Morey, Richard D.
    Hoekstra, Rink
    Rouder, Jeffrey N.
    Lee, Michael D.
    Wagenmakers, Eric-Jan
    PSYCHONOMIC BULLETIN & REVIEW, 2016, 23 (01) : 103 - 123
  • [33] Robustness of confidence intervals for scale parameters based on M-estimators
    Dasiou, D
    Moyssiadis, C
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2000, 29 (12) : 2761 - 2773
  • [34] Efficient confidence intervals for the difference of two Bernoulli distributions' success parameters
    Erazo, Ignacio
    Goldsman, David
    JOURNAL OF SIMULATION, 2023, 17 (01) : 76 - 93
  • [35] Confidence intervals for low dimensional parameters in high dimensional linear models
    Zhang, Cun-Hui
    Zhang, Stephanie S.
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2014, 76 (01) : 217 - 242
  • [36] A comparison of some confidence intervals for a binomial proportion based on a shrinkage estimator
    Almendra-Arao, Felix
    Reyes-Cervantes, Hortensia
    Morales-Cortes, Marcos
    OPEN MATHEMATICS, 2023, 21 (01):
  • [37] Confidence Intervals for Survival Probabilities: A Comparison Study
    Yuan, Xiaobin
    Rai, Shesh N.
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2011, 40 (07) : 978 - 991
  • [38] Confidence Intervals Make a Difference: Effects of Showing Confidence Intervals on Inferential Reasoning
    Hoekstra, Rink
    Johnson, Addie
    Kiers, Henk A. L.
    EDUCATIONAL AND PSYCHOLOGICAL MEASUREMENT, 2012, 72 (06) : 1039 - 1052
  • [39] Smallest confidence intervals for one binomial proportion
    Wang, Weizhen
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2006, 136 (12) : 4293 - 4306
  • [40] A COMPARISON OF CONFIDENCE INTERVALS FOR A PROPORTION AND CRITERIA FOR THEIR APPLICATION
    Reyes-Cervantes, Hortensia
    Almendra-Arao, Felix
    Morales-Cortes, Marcos
    ADVANCES AND APPLICATIONS IN STATISTICS, 2019, 58 (01) : 35 - 43