Comprehensive Learning Particle Swarm Optimization Algorithm With Local Search for Multimodal Functions

被引:308
作者
Cao, Yulian [1 ]
Zhang, Han [2 ]
Li, Wenfeng [1 ]
Zhou, Mengchu [3 ]
Zhang, Yu [1 ]
Chaovalitwongse, Wanpracha Art [4 ]
机构
[1] Wuhan Univ Technol, Sch Logist Engn, Wuhan 430063, Hubei, Peoples R China
[2] Karlsruhe Inst Technol, Inst Nucl & Energy Technol, D-76344 Eggenstein Leopoldshafen, Germany
[3] New Jersey Inst Technol, Dept Elect & Comp Engn, Newark, NJ 07102 USA
[4] Univ Arkansas, Dept Ind Engn, Fayetteville, AR 72701 USA
基金
中国国家自然科学基金;
关键词
Adaptive strategy; evolutionary algorithm; local search (LS); multimodal function; particle swarm optimization (PSO); GLOBAL OPTIMIZATION; DIVERSITY; NETWORK;
D O I
10.1109/TEVC.2018.2885075
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A comprehensive learning particle swarm optimizer (CLPSO) embedded with local search (LS) is proposed to pursue higher optimization performance by taking the advantages of CLPSO's strong global search capability and LS's fast convergence ability. This paper proposes an adaptive LS starting strategy by utilizing our proposed quasi-entropy index to address its key issue, i.e., when to start LS. The changes of the index as the optimization proceeds are analyzed in theory and via numerical tests. The proposed algorithm is tested on multimodal benchmark functions. Parameter sensitivity analysis is performed to demonstrate its robustness. The comparison results reveal overall higher convergence rate and accuracy than those of CLPSO, state-of-the-art particle swarm optimization variants.
引用
收藏
页码:718 / 731
页数:14
相关论文
共 51 条
  • [11] A Supervised Learning and Control Method to Improve Particle Swarm Optimization Algorithms
    Dong, Wenyong
    Zhou, MengChu
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2017, 47 (07): : 1135 - 1148
  • [12] Fei Han, 2015, Advances in Swarm and Computational Intelligence - 6th International Conference, ICSI 2015, held in conjunction with the Second BRICS Congress, CCI 2015. Proceedings: LNCS 9140, P460, DOI 10.1007/978-3-319-20466-6_48
  • [13] Incorporation of Solvent Effect into Multi-Objective Evolutionary Algorithm for Improved Protein Structure Prediction
    Gao, Shangce
    Song, Shuangbao
    Cheng, Jiujun
    Todo, Yuki
    Zhou, Mengchu
    [J]. IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2018, 15 (04) : 1365 - 1378
  • [14] Haibin Duan, 2015, IEEE/CAA Journal of Automatica Sinica, V2, P11, DOI 10.1109/JAS.2015.7032901
  • [16] A Collaborative Resource Allocation Strategy for Decomposition-Based Multiobjective Evolutionary Algorithms
    Kang, Qi
    Song, Xinyao
    Zhou, MengChu
    Li, Li
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2019, 49 (12): : 2416 - 2423
  • [17] Kennedy J, 1995, 1995 IEEE INTERNATIONAL CONFERENCE ON NEURAL NETWORKS PROCEEDINGS, VOLS 1-6, P1942, DOI 10.1109/icnn.1995.488968
  • [18] Composite Particle Swarm Optimizer With Historical Memory for Function Optimization
    Li, Jie
    Zhang, Junqi
    Jiang, ChangJun
    Zhou, MengChu
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2015, 45 (10) : 2350 - 2363
  • [19] Li X., 2013, Tech. Rep
  • [20] Comprehensive learning particle swarm optimizer for global optimization of multimodal functions
    Liang, J. J.
    Qin, A. K.
    Suganthan, Ponnuthurai Nagaratnam
    Baskar, S.
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2006, 10 (03) : 281 - 295