Technical note: Dynamic INtegrated Gap-filling and partitioning for OzFlux (DINGO)

被引:31
作者
Beringer, Jason [1 ]
McHugh, Ian [2 ]
Hutley, Lindsay B. [3 ]
Isaac, Peter [4 ]
Kljun, Natascha [5 ]
机构
[1] Univ Western Australia, SEE, Crawley, WA 6009, Australia
[2] Monash Univ, Sch Earth Atmosphere & Environm, Clayton, Vic 3800, Australia
[3] Charles Darwin Univ, Sch Environm, Res Inst Environm & Livelihoods, Darwin, NT 0909, Australia
[4] Monash Univ, Sch Earth Atmosphere & Environm, Clayton, Vic 3800, Australia
[5] Swansea Univ, Dept Geog, Singleton Pk, Swansea SA2 8PP, W Glam, Wales
基金
澳大利亚研究理事会;
关键词
NORTHERN AUSTRALIA; PASSIVE MICROWAVE; TROPICAL SAVANNA; EVAPOTRANSPIRATION; PRODUCTIVITY; UNCERTAINTY; ECOSYSTEMS; CARBON; FLUX;
D O I
10.5194/bg-14-1457-2017
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Standardised, quality-controlled and robust data from flux networks underpin the understanding of ecosystem processes and tools necessary to support the management of natural resources, including water, carbon and nutrients for environmental and production benefits. The Australian regional flux network (OzFlux) currently has 23 active sites and aims to provide a continental-scale national research facility to monitor and assess Australia's terrestrial biosphere and climate for improved predictions. Given the need for standardised and effective data processing of flux data, we have developed a software suite, called the Dynamic INtegrated Gap-filling and partitioning for OzFlux (DINGO), that enables gap-filling and partitioning of the primary fluxes into ecosystem respiration (Fre) and gross primary productivity (GPP) and subsequently provides diagnostics and results. We outline the processing pathways and methodologies that are applied in DINGO (v13) to OzFlux data, including (1) gap-filling of meteorological and other drivers; (2) gap-filling of fluxes using artificial neural networks; (3) the u* threshold determination; (4) partitioning into ecosystem respiration and gross primary productivity; (5) random, model and u* uncertainties; and (6) diagnostic, footprint calculation, summary and results outputs. DINGO was developed for Australian data, but the framework is applicable to any flux data or regional network. Quality data from robust systems like DINGO ensure the utility and uptake of the flux data and facilitates synergies between flux, remote sensing and modelling.
引用
收藏
页码:1457 / 1460
页数:4
相关论文
共 19 条
[1]   Passive microwave and optical index approaches for estimating surface conductance and evapotranspiration in forest ecosystems [J].
Barraza, Veronica ;
Restrepo-Coupe, Natalia ;
Huete, Alfredo ;
Grings, Francisco ;
Van Gorsel, Eva .
AGRICULTURAL AND FOREST METEOROLOGY, 2015, 213 :126-137
[2]   Behavior of multitemporal and multisensor passive microwave indices in Southern Hemisphere ecosystems [J].
Barraza, Veronica ;
Grings, Francisco ;
Ferrazzoli, Paolo ;
Huete, Alfredo ;
Restrepo-Coupe, Natalia ;
Beringer, Jason ;
Van Gorsel, Eva ;
Karszenbaum, Haydee .
JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES, 2014, 119 (12) :2231-2244
[3]  
Beringer J., 2013, WHROO OZFLUX TOWER S
[4]   An introduction to the Australian and New Zealand flux tower network - OzFlux [J].
Beringer, Jason ;
Hutley, Lindsay B. ;
McHugh, Ian ;
Arndt, Stefan K. ;
Campbell, David ;
Cleugh, Helen A. ;
Cleverly, James ;
Resco de Dios, Victor ;
Eamus, Derek ;
Evans, Bradley ;
Ewenz, Cacilia ;
Grace, Peter ;
Griebel, Anne ;
Haverd, Vanessa ;
Hinko-Najera, Nina ;
Huete, Alfredo ;
Isaac, Peter ;
Kanniah, Kasturi ;
Leuning, Ray ;
Liddell, Michael J. ;
Macfarlane, Craig ;
Meyer, Wayne ;
Moore, Caitlin ;
Pendall, Elise ;
Phillips, Alison ;
Phillips, Rebecca L. ;
Prober, Suzanne M. ;
Restrepo-Coupe, Natalia ;
Rutledge, Susanna ;
Schroder, Ivan ;
Silberstein, Richard ;
Southall, Patricia ;
Yee, Mei Sun ;
Tapper, Nigel J. ;
van Gorsel, Eva ;
Vote, Camilla ;
Walker, Jeff ;
Wardlaw, Tim .
BIOGEOSCIENCES, 2016, 13 (21) :5895-5916
[5]   Quantifying the relative importance of greenhouse gas emissions from current and future savanna land use change across northern Australia [J].
Bristow, Mila ;
Hutley, Lindsay B. ;
Beringer, Jason ;
Livesley, Stephen J. ;
Edwards, Andrew C. ;
Arndt, Stefan K. .
BIOGEOSCIENCES, 2016, 13 (22) :6285-6303
[6]  
Burba G., 2013, Eddy Covariance Method for Scientific, Industrial, Agricultural and Regulatory Applications: A Field Book on Measuring Ecosystem Gas Exchange and Areal Emission Rates
[7]  
Calperum Tech, 2013, CALPERUM TECH CALPER
[8]   Actual evapotranspiration estimation by ground and remote sensing methods: the Australian experience [J].
Glenn, Edward P. ;
Doody, Tanya M. ;
Guerschman, Juan P. ;
Huete, Alfredo R. ;
King, Edward A. ;
McVicar, Tim R. ;
Van Dijk, Albert I. J. M. ;
Van Niel, Thomas G. ;
Yebra, Marta ;
Zhang, Yongqiang .
HYDROLOGICAL PROCESSES, 2011, 25 (26) :4103-4116
[9]   Remote sensing of ecosystem light use efficiency with MODIS-based PRI [J].
Goerner, A. ;
Reichstein, M. ;
Tomelleri, E. ;
Hanan, N. ;
Rambal, S. ;
Papale, D. ;
Dragoni, D. ;
Schmullius, C. .
BIOGEOSCIENCES, 2011, 8 (01) :189-202
[10]   Multiple observation types reduce uncertainty in Australia's terrestrial carbon and water cycles [J].
Haverd, V. ;
Raupach, M. R. ;
Briggs, P. R. ;
Canadell, J. G. ;
Isaac, P. ;
Pickett-Heaps, C. ;
Roxburgh, S. H. ;
van Gorsel, E. ;
Rossel, R. A. Viscarra ;
Wang, Z. .
BIOGEOSCIENCES, 2013, 10 (03) :2011-2040