Existence and characterization of regions minimizing perimeter under a volume constraint inside Euclidean cones

被引:69
作者
Ritoré, M [1 ]
Rosales, C [1 ]
机构
[1] Univ Granada, Dept Geometria & Topol, E-18071 Granada, Spain
关键词
isoperimetric regions; stability; hypersurfaces with constant mean curvature;
D O I
10.1090/S0002-9947-04-03537-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the problem of existence of regions separating a given amount of volume with the least possible perimeter inside a Euclidean cone. Our main result shows that nonexistence for a given volume implies that the isoperimetric profile of the cone coincides with the one of the half-space. This allows us to give some criteria ensuring existence of isoperimetric regions: for instance, local convexity of the cone at some boundary point. We also characterize which are the stable regions in a convex cone, i.e., second order minima of perimeter under a volume constraint. From this it follows that the isoperimetric regions in a convex cone are the euclidean balls centered at the vertex intersected with the cone.
引用
收藏
页码:4601 / 4622
页数:22
相关论文
共 28 条
[1]  
ALMGREN F, 1976, MEM AM MATH SOC, V4, P165
[2]  
[Anonymous], 1998, RIEMANNIAN GEOMETRY
[3]   STABILITY OF HYPERSURFACES WITH CONSTANT MEAN-CURVATURE [J].
BARBOSA, JL ;
DOCARMO, M .
MATHEMATISCHE ZEITSCHRIFT, 1984, 185 (03) :339-353
[4]  
BERARD P, 1982, ANN SCI ECOLE NORM S, V15, P513
[5]  
Chavel I., 1984, Eigenvalues in Riemannian geometry
[6]  
Giusti E., 1984, MINIMAL SURFACES FUN
[7]   ON THE REGULARITY OF BOUNDARIES OF SETS MINIMIZING PERIMETER WITH A VOLUME CONSTRAINT [J].
GONZALEZ, E ;
MASSARI, U ;
TAMANINI, I .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1983, 32 (01) :25-37
[8]  
GROMOV M, 1999, PROGR MATH, V152
[9]   OPTIMAL REGULARITY FOR CODIMENSION ONE MINIMAL-SURFACES WITH A FREE-BOUNDARY [J].
GRUTER, M .
MANUSCRIPTA MATHEMATICA, 1987, 58 (03) :295-343
[10]  
GRUTER M, 1987, ARCH RATION MECH AN, V97, P261