A Python']Python-Based Open Source System for Geographic Object-Based Image Analysis (GEOBIA) Utilizing Raster Attribute Tables

被引:58
作者
Clewley, Daniel [1 ]
Bunting, Peter [2 ]
Shepherd, James [3 ]
Gillingham, Sam [3 ]
Flood, Neil [5 ]
Dymond, John [4 ]
Lucas, Richard [6 ]
Armston, John [5 ]
Moghaddam, Mahta [1 ]
机构
[1] Univ So Calif, Viterbi Sch Engn, Los Angeles, CA 90089 USA
[2] Aberystwyth Univ, Dept Geog & Earth Sci, Aberystwyth SY23 3DB, Ceredigion, Wales
[3] Landcare Res, Informat Team, Palmerson North, New Zealand
[4] Landcare Res, Soils & Landscape Team, Palmerson North, New Zealand
[5] Dept Sci Informat Technol Innovat & Arts, Div Sci, Ctr Remote Sensing, Brisbane, Qld 4001, Australia
[6] Univ New S Wales, Sch Biol Earth & Environm Sci, Sydney, NSW 2052, Australia
基金
欧盟第七框架计划;
关键词
GEOBIA; open source; segmentation; !text type='Python']Python[!/text; Raster Attribute Table; RAT; TuiView; RIOS; RSGISLib; GDAL; LAND-COVER; CLASSIFICATION; SOFTWARE; 6S;
D O I
10.3390/rs6076111
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
A modular system for performing Geographic Object-Based Image Analysis (GEOBIA), using entirely open source (General Public License compatible) software, is presented based around representing objects as raster clumps and storing attributes as a raster attribute table (RAT). The system utilizes a number of libraries, developed by the authors: The Remote Sensing and GIS Library (RSGISLib), the Raster I/O Simplification (RIOS) Python Library, the KEA image format and TuiView image viewer. All libraries are accessed through Python, providing a common interface on which to build processing chains. Three examples are presented, to demonstrate the capabilities of the system: (1) classification of mangrove extent and change in French Guiana; (2) a generic scheme for the classification of the UN-FAO land cover classification system (LCCS) and their subsequent translation to habitat categories; and (3) a national-scale segmentation for Australia. The system presented provides similar functionality to existing GEOBIA packages, but is more flexible, due to its modular environment, capable of handling complex classification processes and applying them to larger datasets.
引用
收藏
页码:6111 / 6135
页数:25
相关论文
共 37 条
  • [1] HEDGEROW SEGMENTATION ON VHR OPTICAL SATELLITE IMAGES FOR HABITAT MONITORING
    Arias, M.
    Inglada, J.
    Lucas, R.
    Blonda, P.
    [J]. 2013 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2013, : 3301 - 3304
  • [2] Baatz M., 2008, Progressing from object-based to object-oriented image analysis, P29, DOI DOI 10.1007/978-3-540-77058-9_2
  • [3] Baatz M., 2000, ANGEW GEOGRAPHISCHE, P12
  • [4] Object based image analysis for remote sensing
    Blaschke, T.
    [J]. ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2010, 65 (01) : 2 - 16
  • [5] Bunting P, ARCSI
  • [6] The Remote Sensing and GIS Software Library (RSGISLib)
    Bunting, Peter
    Clewley, Daniel
    Lucas, Richard M.
    Gillingham, Sam
    [J]. COMPUTERS & GEOSCIENCES, 2014, 62 : 216 - 226
  • [7] The KEA image file format
    Bunting, Peter
    Gillingham, Sam
    [J]. COMPUTERS & GEOSCIENCES, 2013, 57 : 54 - 58
  • [8] Christophe E., 2009, IEEE Geoscience and Remote Sensing Newsletter, V35, P9
  • [9] Christophe E., 2007, P IEEE INT C IM PROC
  • [10] Definiens, 2014, TECHNICAL REPORT