Impact of Dilute Sulfuric Acid Pretreatment on Fermentable Sugars and Structure of Bamboo for Bioethanol Production

被引:0
|
作者
Chen, Shangxing [1 ,2 ]
Wang, Zongde [1 ]
Fang, Kai [1 ]
Fan, Guorong [1 ]
Peng, Wang [1 ]
Song, Jie [2 ]
机构
[1] Jiangxi Agr Univ, Jiangxi Prov Key Lab Bamboo Germplasm Resources &, Nanchang 330045, Peoples R China
[2] Univ Michigan, Dept Chem & Biochem, Flint, MI 48503 USA
来源
BIORESOURCES | 2014年 / 9卷 / 04期
关键词
Fuel ethanol; Dilute acid pretreatment; Enzymatic hydrolysis; Fermentable sugars; Structural characteristics; Bamboo; ETHANOL-PRODUCTION; CORN STOVER; ENZYMATIC SACCHARIFICATION; WHEAT-STRAW; LIGNOCELLULOSIC BIOMASS; PICHIA-STIPITIS; ACETIC-ACID; RICE STRAW; WHITE-ROT; DETOXIFICATION;
D O I
暂无
中图分类号
TB3 [工程材料学]; TS [轻工业、手工业、生活服务业];
学科分类号
0805 ; 080502 ; 0822 ;
摘要
Moso bamboo (Phyllostachys edulis) is an important source of lignocellulosic materials because of its fast growth, its vegetative propagation, and its easy harvesting. The pretreatment of bamboo with dilute sulfuric acid and the effects on its chemical components and enzymatic hydrolysis were studied, in addition to the fibrous structural properties of pretreated residues by scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared (FTIR) spectroscopy. The results showed that dilute sulfuric acid pretreatment primarily hydrolyzed hemicelluloses and resulted in enhanced cellulose and lignin content in the pretreated solids. The maximum yield of hemicellulose recovery was 81.42% when pretreated with 1.00% sulfuric acid at 150 degrees C for 30 min, and the enzymatic hydrolysis yield was 79.45% when hydrolyzed for 72 h with an enzyme loading of cellulase 40 FPU/g of cellulose. Under these conditions, the overall sugar yield was 83.36% (cellulose and hemicellulose), with a total of 67.11 g fermentable sugars from 100 g dry bamboo. The results indicated that Moso bamboo underwent considerable changes in its chemical composition and physical properties after acid pretreatment, such as the removal of hemicellulose and lignin, an increase in specific surface area and pore volume, and exposure of internal structure, which enhances the enzymatic hydrolysis of Moso bamboo.
引用
收藏
页码:7636 / 7652
页数:17
相关论文
共 50 条
  • [1] Conversion of bamboo into fermentable sugars using dilute sulfuric acid pretreatment and enzymatic hydrolysis
    Chen, Shangxing
    Wang, Zongde
    Fang, Kai
    Fan, Guorong
    Song, Jie
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 247
  • [2] Dilute Sulfuric Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover into Fermentable Sugars
    Chen, Shangxing
    Yong, Qiang
    Xu, Yong
    Yu, Shiyuan
    ADVANCED ENGINEERING MATERIALS II, PTS 1-3, 2012, 535-537 : 2462 - 2468
  • [3] Impact of dilute acid pretreatment on the structure of bagasse for bioethanol production
    Chen, Wei-Hsin
    Tu, Yi-Jian
    Sheen, Herng-Kuang
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2010, 34 (03) : 265 - 274
  • [4] The production of fermentable sugar and bioethanol from acacia wood by optimizing dilute sulfuric acid pretreatment and post treatment
    Lee, Ilgyu
    Yu, Ju-Hyun
    FUEL, 2020, 275
  • [5] Conversion of Corn Stover into Fermentable Sugars by Dilute Sulfuric Acid Pretreatment and Enzymatic Saccharification
    Chen, Shangxing
    Yong, Qiang
    Xu, Yong
    Zhu, Junjun
    Yu, Shiyuan
    PROCEEDINGS OF INTERNATIONAL CONFERENCE ON PULPING, PAPERMAKING AND BIOTECHNOLOGY 2008: ICPPB '08, VOL I, 2008, : 184 - 189
  • [6] Effect of Dilute Acid Pretreatment on the Sugarcane Leaf for Fermentable Sugars Production
    Martins, Julia Ribeiro
    Schmatz, Alison Andrei
    Salazar-Bryan, Ana Maria
    Brienzo, Michel
    SUGAR TECH, 2022, 24 (05) : 1540 - 1550
  • [7] Effect of Dilute Acid Pretreatment on the Sugarcane Leaf for Fermentable Sugars Production
    Júlia Ribeiro Martins
    Alison Andrei Schmatz
    Ana Maria Salazar-Bryan
    Michel Brienzo
    Sugar Tech, 2022, 24 : 1540 - 1550
  • [8] Optimization of the acid pretreatment of rice hulls to obtain fermentable sugars for bioethanol production
    Dagnino, E. P.
    Chamorro, E. R.
    Romano, S. D.
    Felissia, F. E.
    Area, M. C.
    INDUSTRIAL CROPS AND PRODUCTS, 2013, 42 : 363 - 368
  • [9] Statistical optimization of dilute acid pretreatment of lignocellulosic biomass by response surface methodology to obtain fermentable sugars for bioethanol production
    Yildirim, Oznur
    Ozkaya, Bestami
    Altinbas, Mahmut
    Demir, Ahmet
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2021, 45 (06) : 8882 - 8899
  • [10] Response Surface Optimization of Dilute Sulfuric Acid Pretreatment of Switchgrass (Panicum virgatum L.) for Fermentable Sugars Production
    Paniagua-Garcia, Ana I.
    Diez-Antolinez, Rebeca
    Hijosa-Valsero, Maria
    Sanchez, Marta E.
    Coca, Monica
    5TH INTERNATIONAL SYMPOSIUM ON INDUSTRIAL BIOTECHNOLOGY (IBIC 2016), 2016, 49 : 223 - 228