Bouncing cosmology in f(Q) symmetric teleparallel gravity

被引:158
作者
Bajardi, Francesco [1 ,2 ]
Vernieri, Daniele [1 ,2 ]
Capozziello, Salvatore [1 ,2 ,3 ,4 ]
机构
[1] Univ Naples Federico II, Dept Phys E Pancini, Naples, Italy
[2] Compl Univ Monte S Angelo, INFN Sez Napoli, Edificio G,Via Cinthia, I-80126 Naples, Italy
[3] Scuola Super Meridionale, Largo San Marcellino 10, I-80138 Naples, Italy
[4] Tomsk State Pedag Univ, Ul Kievskaya 60, Tomsk 634061, Russia
关键词
INFLATION;
D O I
10.1140/epjp/s13360-020-00918-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider f(Q) extended symmetric teleparallel cosmologies, where Q is the non-metricity scalar, and constrain its functional form through the order reduction method. By using this technique, we are able to reduce and integrate the field equations and thus to select the corresponding models giving rise to bouncing cosmology. The selected Lagrangian is then used to develop the Hamiltonian formalism and to obtain the Wave Function of the Universe which suggests that classical observable universes can be recovered according to the Hartle Criterion.
引用
收藏
页数:14
相关论文
共 69 条
[1]   Torsion gravity: A reappraisal [J].
Arcos, HI ;
Pereira, JG .
INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2004, 13 (10) :2193-2240
[2]   NEW HAMILTONIAN-FORMULATION OF GENERAL-RELATIVITY [J].
ASHTEKAR, A .
PHYSICAL REVIEW D, 1987, 36 (06) :1587-1602
[3]  
Bajardi F., ARXIV201007914GRQC
[4]  
Bajardi F, 2020, EUR PHYS J C, V80, DOI 10.1140/epjc/s10052-020-8258-2
[5]   Higher Dimensional Static and Spherically Symmetric Solutions in Extended Gauss-Bonnet Gravity [J].
Bajardi, Francesco ;
Dialektopoulos, Konstantinos F. ;
Capozziello, Salvatore .
SYMMETRY-BASEL, 2020, 12 (03)
[6]   Bouncing cosmology in f (R, G) gravity by order reduction [J].
Barros, Bruno J. ;
Teixeira, Elsa M. ;
Vernieri, Daniele .
ANNALS OF PHYSICS, 2020, 419
[7]   REGULAR REDUCTION OF RELATIVISTIC THEORIES OF GRAVITATION WITH A QUADRATIC LAGRANGIAN [J].
BEL, L ;
ZIA, HS .
PHYSICAL REVIEW D, 1985, 32 (12) :3128-3135
[8]   Cosmology in f (Q) geometry [J].
Beltran Jimenez, Jose ;
Heisenberg, Lavinia ;
Koivisto, Tomi ;
Pekar, Simon .
PHYSICAL REVIEW D, 2020, 101 (10)
[9]   The Geometrical Trinity of Gravity [J].
Beltran Jimenez, Jose ;
Heisenberg, Lavinia ;
Koivisto, Tomi S. .
UNIVERSE, 2019, 5 (07)
[10]  
Benetti M., ARXIV200615335ASTROP