Uniqueness of the measure of maximal entropy for geodesic flows on certain manifolds without conjugate points

被引:18
作者
Climenhaga, Vaughn [1 ]
Knieper, Gerhard [2 ]
War, Khadim [3 ]
机构
[1] Univ Houston, Dept Math, Houston, TX 77204 USA
[2] Ruhr Univ Bochum, Dept Math, D-44780 Bochum, Germany
[3] IMPA, Estr Dona Castorina 110, Rio De Janeiro, Brazil
关键词
Geodesic flows without conjugate points; Measure of maximal entropy; EQUILIBRIUM STATES; TOPOLOGICAL-ENTROPY; RESIDUAL FINITENESS; SURFACE; GROWTH; DYNAMICS;
D O I
10.1016/j.aim.2020.107452
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that for closed surfaces M with Riemannian metrics without conjugate points and genus >= 2 the geodesic flow on the unit tangent bundle (TM)-M-1 has a unique measure of maximal entropy. Furthermore, this measure is fully supported on (TM)-M-1, is the limiting distribution of closed orbits, and the flow is mixing with respect to this measure. We formulate conditions under which this result extends to higher dimensions. (c) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:44
相关论文
共 52 条
[1]  
[Anonymous], 1998, Grad. Texts in Math.
[2]  
Arzhantseva G., 2014, TRENDS MATH RES PERS, V1, P7
[3]   On the mixing property for hyperbolic systems [J].
Babillot, M .
ISRAEL JOURNAL OF MATHEMATICS, 2002, 129 (1) :61-76
[4]  
BALLMANN W, 1987, J DIFFER GEOM, V25, P249
[5]  
Baumslag Gilbert, 1962, Math. Z., V78, P423
[6]   WAVE-EQUATION ON A COMPACT RIEMANNIAN MANIFOLD WITHOUT CONJUGATE POINTS [J].
BERARD, PH .
MATHEMATISCHE ZEITSCHRIFT, 1977, 155 (03) :249-276
[7]  
Bourdon Marc, 1996, Publications Mathematiques de l'IHES, V83, P95
[8]   SYMBOLIC DYNAMICS FOR HYPERBOLIC FLOWS [J].
BOWEN, R .
AMERICAN JOURNAL OF MATHEMATICS, 1973, 95 (02) :429-459
[9]   PERIODIC ORBITS FOR HYPERBOLIC FLOWS [J].
BOWEN, R .
AMERICAN JOURNAL OF MATHEMATICS, 1972, 94 (01) :1-&
[10]  
Bowen R., 1974, Mathematical Systems Theory, V7, P300