Hecke duality of Ikeda lifts

被引:1
作者
Garrett, Paul [1 ]
Heim, Bernhard [2 ]
机构
[1] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
[2] German Univ Technol Oman, Muscat, Oman
关键词
Automorphic L-functions; Degenerate principal series; Differential operators; Ikeda lifts; SIEGEL CUSP FORMS; MODULAR-FORMS; FOURIER COEFFICIENTS; SERIES; REPRESENTATIONS; DEGREE-2; PRODUCTS; SP(N);
D O I
10.1016/j.jnt.2014.01.030
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Ikeda lifts form a distinguished subspace of Siegel modular forms. In this paper we prove several global and local results concerning this space. We find that degenerate principal series representations (for the Siegel parabolic) of the symplectic group Spa of even degree satisfy a Hecke duality relation which has applications to Ikeda lifts and leads to converse theorems. Moreover we apply certain differential operators to study pullbacks of Ikeda lifts. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:171 / 186
页数:16
相关论文
共 33 条
[1]  
Andrianov A.N., 1976, T MAT I STEKLOVA, V142, P22
[2]   Analytic continuation of representations and estimates of automorphic forms [J].
Bernstein, J ;
Reznikov, A .
ANNALS OF MATHEMATICS, 1999, 150 (01) :329-352
[3]  
Bump D., 2005, $L$functions and applications: progress and prospects, V11, P41
[4]  
Garrett P., 1983, PROG MATH, V46, P114
[5]  
GARRETT PAUL., 1999, P S PURE MATH, V66, P35
[6]   ON THE ARITHMETIC OF SIEGEL-HILBERT CUSPFORMS - PETERSSON INNER PRODUCTS AND FOURIER COEFFICIENTS [J].
GARRETT, PB .
INVENTIONES MATHEMATICAE, 1992, 107 (03) :453-481
[7]   DECOMPOSITION OF EISENSTEIN SERIES - RANKIN TRIPLE PRODUCTS [J].
GARRETT, PB .
ANNALS OF MATHEMATICS, 1987, 125 (02) :209-235
[8]  
Gelbart S., 1975, AUTOMORPHIC FORMS ON
[9]  
Gelbart S., 1987, EXPLICIT CONSTRUCTIO, V1254, DOI DOI 10.1007/BFB0078125
[10]  
Heim B., 2012, PREPRINT