Citric acid aided synthesis, characterization, and high-rate electrochemical performance of LiNi0.5Mn1.5O4

被引:31
作者
Potapenko, A. V. [1 ]
Chernukhin, S. I. [1 ]
Romanova, I. V. [2 ]
Rabadanov, K. Sh. [3 ]
Gafurov, M. M. [3 ]
Kirillov, S. A. [1 ,2 ]
机构
[1] Joint Dept Electrochem Energy Syst, UA-03142 Kiev, Ukraine
[2] Inst Sorpt & Problems Endoecol, UA-03164 Kiev, Ukraine
[3] Kh I Amirkhanov Inst Phys & Analyt Ctr Common Acc, Makhachkala 367003, Russia
关键词
LiNi0.5Mn1.5O4; lithium-ion batteries; high-rate performance; POSITIVE-ELECTRODE MATERIAL; HIGH-RATE CAPABILITY; HIGH-SURFACE-AREA; SPINEL LINI0.5MN1.5O4; CATHODE MATERIALS; OXYGEN NONSTOICHIOMETRY; LI BATTERIES; LITHIUM; CO; LIMN1.5NI0.5O4;
D O I
10.1016/j.electacta.2014.04.083
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The citric acid aided synthesis, physico-chemical and electrochemical characterization of the nano-sized nickel-doped lithium manganese spinel, LiNi0.5Mn1.5O4 having excellent high-rate properties is described. An optimal electrode material represented by perfectly shaped, well-faceted particles of 100-400 nm size containing crystallites of the 15-22 nm size could be obtained upon the thermal treatment at 700 degrees C. In spite of a reduced specific capacity (102 mAh.g(-1)) it is able to retain a half of it upon the discharge current of 4400 mA.g(-1) (30C) and to endure the current load of 5870 mAh.g(-1) (40C) delivering the reversible specific capacity of 25 mAh.g(-1). It is suggested that the reduced specific capacity is determined primarily by the aggregation of material's particles, whereas the good high-rate capability is governed not only by the size of crystallites but also by the perfectness of crystals, and imperfections in big, well-shaped crystals (like dislocations, grain boundaries, etc.) less retard the diffusion of lithium ions than particle boundaries in small, randomly oriented, accreted crystals. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:442 / 449
页数:8
相关论文
共 72 条
[1]   Powder Characterization and Electrochemical Properties of LiNi0.5Mn1.5O4 Cathode Materials Produced by Large Spray Pyrolysis Using Flame Combustion [J].
Akao, Shinsuke ;
Yamada, Motofumi ;
Kodera, Takayuki ;
Myoujin, Kenichi ;
Ogihara, Takashi .
ADVANCES IN MATERIALS SCIENCE AND ENGINEERING, 2011, 2011
[2]   Changes in the local structure of LiMgyNi0.5-yMn1.5O4 electrode materials during lithium extraction [J].
Alcántara, R ;
Jaraba, M ;
Lavela, P ;
Tirado, JL ;
Zhecheva, E ;
Stoyanova, R .
CHEMISTRY OF MATERIALS, 2004, 16 (08) :1573-1579
[3]   Nanosized LiMyMn2-yO4 (M = Cr, Co and Ni) spinels synthesized by a sucrose-aided combustion method -: Structural characterization and electrochemical properties [J].
Amarilla, J. M. ;
Rojas, R. M. ;
Pico, F. ;
Pascual, L. ;
Petrov, K. ;
Kovacheva, D. ;
Lazarraga, M. G. ;
Lejona, I. ;
Rojo, J. M. .
JOURNAL OF POWER SOURCES, 2007, 174 (02) :1212-1217
[4]   Structure and insertion properties of disordered and ordered LN0.5Mn1.5O4 spinels prepared by wet chemistry [J].
Amdouni, N. ;
Zaghib, K. ;
Gendron, F. ;
Mauger, A. ;
Julien, C. M. .
IONICS, 2006, 12 (02) :117-126
[5]   Nanostructured materials for advanced energy conversion and storage devices [J].
Aricò, AS ;
Bruce, P ;
Scrosati, B ;
Tarascon, JM ;
Van Schalkwijk, W .
NATURE MATERIALS, 2005, 4 (05) :366-377
[6]   Expanding the rate capabilities of the LiNi0.5Mn1.5O4 spinel by exploiting the synergistic effect between nano and microparticles [J].
Arrebola, JC ;
Caballero, A ;
Hernán, L ;
Morales, J .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2005, 8 (12) :A641-A645
[7]   Crystallinity control of a nanostructured LiNi0.5Mn1.5O4 spinet via polymer-assisted synthesis:: A method for improving its rate capability and performance in 5 V lithium batteries [J].
Arrebola, Jose C. ;
Caballero, Alvaro ;
Cruz, Manuel ;
Hernan, Lourdes ;
Morales, Julian ;
Castellon, Enrique Rodriguez .
ADVANCED FUNCTIONAL MATERIALS, 2006, 16 (14) :1904-1912
[8]  
Balaji S, 2010, MATER SCI-POLAND, V28, P583
[9]   Synthesis, Characterization, and Comparison of Electrochemical Properties of LiM0.5Mn1.5O4 (M = Fe, Co, Ni) at Different Temperatures [J].
Bhaskar, Aiswarya ;
Bramnik, Natalia N. ;
Senyshyn, Anatoliy ;
Fuess, Hartmut ;
Ehrenberg, Helmut .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (06) :A689-A695
[10]   Aqueous synthesis of high surface area metal oxides [J].
Bluthardt, Christian ;
Fink, Carola ;
Flick, Klemens ;
Hagemeyer, Alfred ;
Schlichter, Marco ;
Volpe, Anthony, Jr. .
CATALYSIS TODAY, 2008, 137 (01) :132-143