Computational Complexity of Hedonic Games on Sparse Graphs

被引:2
作者
Hanaka, Tesshu [1 ]
Kiya, Hironori [2 ]
Maei, Yasuhide [2 ]
Ono, Hirotaka [2 ]
机构
[1] Chuo Univ, Dept Informat & Syst Engn, Bunkyo Ku, 1-13-27 Kasuga, Tokyo, Japan
[2] Nagoya Univ, Grad Sch Informat, Chikusa Ku, Furo Cho, Nagoya, Aichi, Japan
来源
PRINCIPLES AND PRACTICE OF MULTI-AGENT SYSTEMS (PRIMA 2019) | 2019年 / 11873卷
关键词
Hedonic games; Coalition formation; Social network; PLS-completeness; Parameterized algorithm; STABILITY;
D O I
10.1007/978-3-030-33792-6_43
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The additively separable hedonic game (ASHG) is a model of coalition formation games on graphs. In this paper, we intensively and extensively investigate the computational complexity of finding several desirable solutions, such as a Nash stable solution, a maximum utilitarian solution, and a maximum egalitarian solution in ASHGs on sparse graphs including bounded-degree graphs, bounded-treewidth graphs, and nearplanar graphs. For example, we show that finding a maximum egalitarian solution is weakly NP-hard even on graphs of treewidth 2, whereas it can be solvable in polynomial time on trees. Moreover, we give a pseudo fixed parameter algorithm when parameterized by treewidth.
引用
收藏
页码:576 / 584
页数:9
相关论文
共 19 条
[1]   Tree-like structure in large social and information networks [J].
Adcock, Aaron B. ;
Sullivan, Blair D. ;
Mahoney, Michael W. .
2013 IEEE 13TH INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2013, :1-10
[2]   Researching with whom? Stability and manipulation [J].
Alcalde, J ;
Revilla, P .
JOURNAL OF MATHEMATICAL ECONOMICS, 2004, 40 (08) :869-887
[3]  
[Anonymous], 1979, Computers and Intractablity: A Guide to the Theory of NP-Completeness
[4]   Computing desirable partitions in additively separable hedonic games [J].
Aziz, Hans ;
Brandt, Felix ;
Seedig, Hans Georg .
ARTIFICIAL INTELLIGENCE, 2013, 195 :316-334
[5]  
Aziz H, 2014, AAMAS'14: PROCEEDINGS OF THE 2014 INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS & MULTIAGENT SYSTEMS, P5
[6]   NP-completeness in hedonic games [J].
Ballester, C .
GAMES AND ECONOMIC BEHAVIOR, 2004, 49 (01) :1-30
[7]   Core in a simple coalition formation game [J].
Banerjee, S ;
Konishi, H ;
Sönmez, T .
SOCIAL CHOICE AND WELFARE, 2001, 18 (01) :135-153
[8]   The stability of hedonic coalition structures [J].
Bogomolnaia, A ;
Jackson, MO .
GAMES AND ECONOMIC BEHAVIOR, 2002, 38 (02) :201-230
[9]  
Cygan M., 2015, PARAMETERIZED, V4, DOI [10.1007/978-3-319-21275-3, DOI 10.1007/978-3-319-21275-3]
[10]   HEDONIC COALITIONS - OPTIMALITY AND STABILITY [J].
DREZE, JH ;
GREENBERG, J .
ECONOMETRICA, 1980, 48 (04) :987-1003