Nonlinear fractional differential equations of Sobolev type

被引:19
作者
Alsaedi, Ahmed [1 ]
Alhothuali, Mohammed S. [1 ]
Ahmad, Bashir [1 ]
Kerbal, Sebti [2 ]
Kirane, Mokhtar [3 ]
机构
[1] King Abdulaziz Univ, Fac Sci, Dept Math, Jeddah 21589, Saudi Arabia
[2] Sultan Qaboos Univ, Dept Math & Stat, Muscat, Oman
[3] Univ La Rochelle, Dept Math Image & Applicat, F-17000 La Rochelle, France
关键词
Nonlinear equations of Sobolev type; nonlocal time operators; nonlocal space operators; nonexistence; QUASI-GEOSTROPHIC EQUATIONS; MAXIMUM PRINCIPLE; CALCULUS; SYSTEMS;
D O I
10.1002/mma.2954
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Sobolev type nonlinear equations with time fractional derivatives are considered. Using the test function method, limiting exponents for nonexistence of solutions are found. Copyright (C) 2013 John Wiley & Sons, Ltd.
引用
收藏
页码:2009 / 2016
页数:8
相关论文
共 18 条
[1]  
[Anonymous], 2000, Applications of Fractional Calculus in Physics
[2]  
[Anonymous], ANOMALOUS TRANSPORT
[3]   Fractal Burgers equations [J].
Biler, P ;
Funaki, T ;
Woyczynski, WA .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1998, 148 (01) :9-46
[4]   A maximum principle applied to quasi-geostrophic equations [J].
Córdoba, A ;
Córdoba, D .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2004, 249 (03) :511-528
[5]   Nonexistence of positive solutions to nonlinear nonlocal elliptic systems [J].
Dahmani, Z. ;
Karami, F. ;
Kerbal, S. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 346 (01) :22-29
[6]   Polymer translocation through a nanopore: A showcase of anomalous diffusion [J].
Dubbeldam, J. L. A. ;
Milchev, A. ;
Rostiashvili, V. G. ;
Vilgis, T. A. .
PHYSICAL REVIEW E, 2007, 76 (01)
[7]  
Furati K., 2008, Fractional Calculus and Applied Analysis, V11, P281
[8]  
Herrmann R., 2018, Fractional Calculus-An Introduction for Physicists
[9]   The maximum principle and the global attractor for the dissipative 2D quasi-geostrophic equations [J].
Ju, N .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2005, 255 (01) :161-181
[10]   Critical exponents of Fujita type for certain evolution equations and systems with spatio-temporal fractional derivatives [J].
Kirane, M ;
Laskri, Y ;
Tatar, NE .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 312 (02) :488-501