The Minkowski problem for polytopes

被引:43
作者
Klain, DA [1 ]
机构
[1] Univ Massachusetts Lowell, Dept Math Sci, Lowell, MA 01854 USA
基金
美国国家科学基金会;
关键词
polytope; isoperimetric; geometric inequality; Minkowski problem; mixed volume; Brunn-Minkowski; convex;
D O I
10.1016/j.aim.2003.07.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The traditional solution to the Minkowski problem for polytopes involves two steps. First, the existence of a polytope satisfying given boundary data is demonstrated. In the second step, the uniqueness of that polytope (up to translation) is then shown to follow from the equality conditions of Minkowski's inequality, a generalized isoperimetric inequality for mixed volumes that is, typically proved in a separate context. In this article we adapt the classical argument to prove both the existence theorem of Minkowski and his mixed volume inequality simultaneously, thereby providing a new proof of Minkowski's inequality that demonstrates the equiprimordial relationship between these two fundamental theorems of convex geometry. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:270 / 288
页数:19
相关论文
共 17 条
[1]  
[Anonymous], 1948, THEORIE KONVEXEN KOR
[2]   CAPACITARY INEQUALITIES OF THE BRUNN-MINKOWSKI TYPE [J].
BORELL, C .
MATHEMATISCHE ANNALEN, 1983, 263 (02) :179-184
[3]   ON EXTENSIONS OF BRUNN-MINKOWSKI AND PREKOPA-LEINDLER THEOREMS, INCLUDING INEQUALITIES FOR LOG CONCAVE FUNCTIONS, AND WITH AN APPLICATION TO DIFFUSION EQUATION [J].
BRASCAMP, HJ ;
LIEB, EH .
JOURNAL OF FUNCTIONAL ANALYSIS, 1976, 22 (04) :366-389
[4]  
BURAGO Y, 1988, GEOMETRI INEQUALITIE
[5]   On the case of equality in the Brunn-Minkowski inequality for capacity [J].
Caffarelli, LA ;
Jerison, D ;
Lieb, EH .
ADVANCES IN MATHEMATICS, 1996, 117 (02) :193-207
[6]  
Gardner RJ., 1995, GEOMETRIC TOMOGRAPHY
[7]  
Groemer H., 1996, GEOMETRIC APPL FOURI, DOI DOI 10.1017/CBO9780511530005
[8]   A Minkowski problem for electrostatic capacity [J].
Jerison, D .
ACTA MATHEMATICA, 1996, 176 (01) :1-47
[9]  
KLAIN D, 2002, BRUNNMINKOWSKI INEQU
[10]  
LORENTZ G, 1996, CONSTRUCTIVE APPROX