BIRNet: Brain image registration using dual-supervised fully convolutional networks

被引:207
作者
Fan, Jingfan [1 ,2 ,3 ]
Cao, Xiaohuan [4 ]
Yap, Pew-Thian [1 ,2 ]
Shen, Dinggang [1 ,2 ,5 ]
机构
[1] Univ N Carolina, Dept Radiol, Chapel Hill, NC 27515 USA
[2] Univ N Carolina, BRIC, Chapel Hill, NC 27515 USA
[3] Beijing Inst Technol, Sch Opt & Photon, Beijing Engn Res Ctr Mixed Real & Adv Display, Beijing, Peoples R China
[4] Shanghai United Imaging Intelligence Co Ltd, Shanghai, Peoples R China
[5] Korea Univ, Dept Brain & Cognit Engn, Seoul, South Korea
关键词
Image registration; Convolutional neural networks; Brain MR image; Hierarchical registration; SYMMETRIC DIFFEOMORPHIC REGISTRATION; CONSTRUCTION; ROBUST; ATLAS; APPEARANCE; HAMMER;
D O I
10.1016/j.media.2019.03.006
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose a deep learning approach for image registration by predicting deformation from image appearance. Since obtaining ground-truth deformation fields for training can be challenging, we design a fully convolutional network that is subject to dual-guidance: (1) Ground-truth guidance using deformation fields obtained by an existing registration method; and (2) Image dissimilarity guidance using the difference between the images after registration. The latter guidance helps avoid overly relying on the supervision from the training deformation fields, which could be inaccurate. For effective training, we further improve the deep convolutional network with gap filling, hierarchical loss, and multi-source strategies. Experiments on a variety of datasets show promising registration accuracy and efficiency compared with state-of-the-art methods. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:193 / 206
页数:14
相关论文
共 65 条
[1]  
Andersson J., 2007, SD
[2]   Diffeomorphic Brain Registration Under Exhaustive Sulcal Constraints [J].
Auzias, Guillaume ;
Colliot, Olivier ;
Glaunes, Joan Alexis ;
Perrot, Matthieu ;
Mangin, Jean-Francois ;
Trouve, Alain ;
Baillet, Sylvain .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2011, 30 (06) :1214-1227
[3]   Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain [J].
Avants, B. B. ;
Epstein, C. L. ;
Grossman, M. ;
Gee, J. C. .
MEDICAL IMAGE ANALYSIS, 2008, 12 (01) :26-41
[4]   VoxelMorph: A Learning Framework for Deformable Medical Image Registration [J].
Balakrishnan, Guha ;
Zhao, Amy ;
Sabuncu, Mert R. ;
Guttag, John ;
Dalca, Adrian, V .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (08) :1788-1800
[5]   An Unsupervised Learning Model for Deformable Medical Image Registration [J].
Balakrishnan, Guha ;
Zhao, Amy ;
Sabuncu, Mert R. ;
Guttag, John ;
Dalca, Adrian V. .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :9252-9260
[6]  
Cao T, 2015, I S BIOMED IMAGING, P691, DOI 10.1109/ISBI.2015.7163967
[7]  
Cao Xiaohuan, 2017, Med Image Comput Comput Assist Interv, V10433, P300, DOI 10.1007/978-3-319-66182-7_35
[8]   End-to-End Unsupervised Deformable Image Registration with a Convolutional Neural Network [J].
de Vos, Bob D. ;
Berendsen, Floris F. ;
Viergever, Max A. ;
Staring, Marius ;
Isgum, Ivana .
DEEP LEARNING IN MEDICAL IMAGE ANALYSIS AND MULTIMODAL LEARNING FOR CLINICAL DECISION SUPPORT, 2017, 10553 :204-212
[9]   FlowNet: Learning Optical Flow with Convolutional Networks [J].
Dosovitskiy, Alexey ;
Fischer, Philipp ;
Ilg, Eddy ;
Haeusser, Philip ;
Hazirbas, Caner ;
Golkov, Vladimir ;
van der Smagt, Patrick ;
Cremers, Daniel ;
Brox, Thomas .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, :2758-2766
[10]   Convex Hull Aided Registration Method (CHARM) [J].
Fan, Jingfan ;
Yang, Jian ;
Zhao, Yitian ;
Ai, Danni ;
Liu, Yonghuai ;
Wang, Ge ;
Wang, Yongtian .
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2017, 23 (09) :2042-2055