Crosscap numbers and the Jones polynomial

被引:12
作者
Kalfagianni, Efstratia [1 ]
Lee, Christine Ruey Shan [2 ]
机构
[1] Michigan State Univ, Dept Math, E Lansing, MI 48824 USA
[2] Univ Texas Austin, Dept Math, Austin, TX 78712 USA
基金
美国国家科学基金会;
关键词
Alternating knot; Jones polynomial; Crosscap number (non-orientable genus); Normal surfaces; Spanning surfaces; Augmented links; COMPUTATIONAL-COMPLEXITY; KNOT; VOLUME; GENUS; DECOMPOSITIONS; SURFACES; LINKS;
D O I
10.1016/j.aim.2015.09.017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give sharp two-sided linear bounds of the crosscap number (non-orientable genus) of alternating links in terms of their Jones polynomial. Our estimates are often exact and we use them to calculate the crosscap numbers for several infinite families of alternating links and for several alternating knots with up to twelve crossings. We also discuss generalizations of our results for classes of non-alternating links. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:308 / 337
页数:30
相关论文
共 41 条
  • [1] Adams CC., 1986, Low-Dimensional Topology and Kleinian Groups, P115
  • [2] A classification of spanning surfaces for alternating links
    Adams, Colin
    Kindred, Thomas
    [J]. ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2013, 13 (05): : 2967 - 3007
  • [3] The computational complexity of knot genus and spanning area
    Agol, Ian
    Hass, Joel
    Thurston, William
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 358 (09) : 3821 - 3850
  • [4] The head and tail conjecture for alternating knots
    Armond, Cody
    [J]. ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2013, 13 (05): : 2809 - 2826
  • [5] Batson J, 1985, ARXIV12041985
  • [6] Computing the Crosscap Number of a Knot Using Integer Programming and Normal Surfaces
    Burton, Benjamin A.
    Ozlen, Melih
    [J]. ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2012, 39 (01):
  • [7] Cha J.C., 2014, KnotInfo: Table of knot invariants
  • [8] Clark B.E., 1978, INT J MATH MATH SCI, V1, P0161
  • [9] GENUS OF ALTERNATING LINK TYPES
    CROWELL, RH
    [J]. ANNALS OF MATHEMATICS, 1959, 69 (02) : 258 - 275
  • [10] A volumish theorem for the Jones polynomial of alternating knots
    Dasbach, Oliver T.
    Lin, Xiao-Song
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 2007, 231 (02) : 279 - 291