PointPoseNet: Point Pose Network for Robust 6D Object Pose Estimation

被引:0
|
作者
Chen, Wei [1 ,2 ]
Duan, Jinming [1 ]
Basevi, Hector [1 ]
Chang, Hyung Jin [1 ]
Leonardis, Ales [1 ]
机构
[1] Univ Birmingham, Sch Comp Sci, Birmingham, W Midlands, England
[2] Natl Univ Def Technol, Sch Comp Sci, Changsha, Hunan, Peoples R China
基金
英国工程与自然科学研究理事会;
关键词
CLASSIFICATION;
D O I
10.1109/wacv45572.2020.9093272
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose a novel pipeline to estimate 6D object pose from RGB-D images of known objects present in complex scenes. The pipeline directly operates on raw point clouds extracted from RGB-D scans. Specifically, our method takes the point cloud as input and regresses the point-wise unit vectors pointing to the 3D keypoints. We then use these vectors to generate keypoint hypotheses from which the 6D object pose hypotheses are computed. Finally, we select the best 6D object pose from the hypotheses based on a proposed scoring mechanism with geometry constraints. Extensive experiments show that the proposed method is robust against the variety in object shape and appearance as well as occlusions between objects, and that our method outperforms the state-of-the-art methods on the LINEMOD and Occlusion LINEMOD datasets.
引用
收藏
页码:2813 / 2822
页数:10
相关论文
共 50 条
  • [31] Anchor-Based 6D Object Pose Estimation
    Liu, Zehao
    Wang, Hao
    Liu, Fuchang
    2021 IEEE 7TH INTERNATIONAL CONFERENCE ON VIRTUAL REALITY (ICVR 2021), 2021, : 33 - 40
  • [32] Binocular vision object 6D pose estimation based on circulatory neural network
    Yang H.
    Li Z.
    Kang Z.-Y.
    Tian B.
    Dong Q.
    Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science), 2023, 57 (11): : 2179 - 2187
  • [33] DRNet: A Depth-Based Regression Network for 6D Object Pose Estimation
    Jin, Lei
    Wang, Xiaojuan
    He, Mingshu
    Wang, Jingyue
    SENSORS, 2021, 21 (05) : 1 - 15
  • [34] PoseCNN: A Convolutional Neural Network for 6D Object Pose Estimation in Cluttered Scenes
    Xiang, Yu
    Schmidt, Tanner
    Narayanan, Venkatraman
    Fox, Dieter
    ROBOTICS: SCIENCE AND SYSTEMS XIV, 2018,
  • [35] SO(3)-Pose: SO(3)-Equivariance Learning for 6D Object Pose Estimation
    Pan, Haoran
    Zhou, Jun
    Liu, Yuanpeng
    Lu, Xuequan
    Wang, Weiming
    Yan, Xuefeng
    Wei, Mingqiang
    COMPUTER GRAPHICS FORUM, 2022, 41 (07) : 371 - 381
  • [36] A RGB-D feature fusion network for occluded object 6D pose estimation
    Song, Yiwei
    Tang, Chunhui
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (8-9) : 6309 - 6319
  • [37] ACR-Pose: Adversarial Canonical Representation Reconstruction Network for Category Level 6D Object Pose Estimation
    Fan, Zhaoxin
    Song, Zhenbo
    Wang, Zhicheng
    Xu, Jian
    Wu, Kejian
    Liu, Hongyan
    He, Jun
    PROCEEDINGS OF THE 4TH ANNUAL ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA RETRIEVAL, ICMR 2024, 2024, : 55 - 63
  • [38] DualPoseNet: Category-level 6D Object Pose and Size Estimation Using Dual Pose Network with Refined Learning of Pose Consistency
    Lin, Jiehong
    Wei, Zewei
    Li, Zhihao
    Xu, Songcen
    Jia, Kui
    Li, Yuanqing
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 3540 - 3549
  • [39] SE(3) Diffusion Model-based Point Cloud Registration for Robust 6D Object Pose Estimation
    Jiang, Haobo
    Salzmann, Mathieu
    Dang, Zheng
    Xie, Jin
    Yang, Jian
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [40] Deep Quaternion Pose Proposals for 6D Object Pose Tracking
    Majcher, Mateusz
    Kwolek, Bogdan
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2021), 2021, : 243 - 251