A micromechanical model of hardening, rate sensitivity and thermal softening in bcc single crystals

被引:73
|
作者
Stainier, L
Cuitiño, AM
Ortiz, M [1 ]
机构
[1] CALTECH, Grad Aeronaut Labs, Pasadena, CA 91125 USA
[2] Univ Liege, Lab Tech Aeronaut & Spatiales, B-4000 Liege, Belgium
[3] Rutgers State Univ, Dept Mech & Aerosp Engn, Piscataway, NJ 08854 USA
关键词
dislocations; constitutive behavior; crystal plasticity; finite strain;
D O I
10.1016/S0022-5096(01)00114-4
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The present paper is concerned with the development of a micromechanical model of the hardening, rate-sensitivity and thermal softening of bee crystals. In formulating the model, we specifically consider the following unit processes: double-kink formation and thermally activated motion of kinks; the close-range interactions between primary and forest dislocations, leading to the formation of jogs; the percolation motion of dislocations through a random array of forest dislocations introducing short-range obstacles of different strengths dislocation multiplication due to breeding by double cross-slip: and dislocation pair annihilation. The model is found to capture salient features of the behavior of Ta crystals such as: the dependence of the initial yield point on temperature and strain rate; the presence of a marked stage I of easy glide, specially at low temperatures and high strain rates; the sharp onset of stage II hardening and its tendency to shift towards lower strains, and eventually disappear. as the temperature increases or the strain rate decreases; the parabolic stage II hardening at low strain rates or high temperatures; the stage 11 softening at high strain rates or low temperatures; the trend towards saturation at high strains; the temperature and strain-rate dependence of the saturation stress; and the orientation dependence of the hardening rate. (C) 2002 Published by Elsevier Science Ltd.
引用
收藏
页码:1511 / 1545
页数:35
相关论文
共 50 条
  • [1] ON CYCLIC HARDENING AND SOFTENING OF COPPER SINGLE CRYSTALS
    KETTUNEN, PO
    JOURNAL OF METALS, 1968, 20 (08): : A59 - &
  • [2] A LARGE DEFORMATION PLASTICITY MODEL WITH RATE SENSITIVITY AND THERMAL SOFTENING
    NICHOLSON, DW
    KIDDY, KC
    JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY-TRANSACTIONS OF THE ASME, 1984, 106 (04): : 388 - 392
  • [3] SOLUTION HARDENING AND SOFTENING OF NB-ZR SINGLE-CRYSTALS
    BOTTA, WJ
    CHRISTIAN, JW
    TAYLOR, G
    PHILOSOPHICAL MAGAZINE A-PHYSICS OF CONDENSED MATTER STRUCTURE DEFECTS AND MECHANICAL PROPERTIES, 1988, 57 (05): : 703 - 716
  • [4] SOFTENING AND HARDENING EFFECTS OF HYDROGEN CHARGING IN IRON SINGLE-CRYSTALS
    PARK, CG
    MESHII, M
    JOURNAL OF METALS, 1981, 33 (09): : A55 - A55
  • [5] The Investigation of the Mechanism of Hardening and Softening of Aluminum Single Crystals with Ultrasound Loading
    Gadalov, Vladimir N.
    Filonovich, Alexander V.
    Vornacheva, Irina V.
    2016 13TH INTERNATIONAL SCIENTIFIC-TECHNICAL CONFERENCE ON ACTUAL PROBLEMS OF ELECTRONIC INSTRUMENT ENGINEERING (APEIE), VOL 1, 2016, : 38 - 41
  • [6] Rate-dependent transition from thermal softening to hardening in elastomers
    Chen, Z
    Atwood, JL
    Mai, YW
    JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 2003, 70 (04): : 611 - 612
  • [7] Rate-Dependent Transition from Thermal Softening to Hardening in Elastomers
    Chen, Z. (chenzh@missouri.edu), 1600, American Society of Mechanical Engineers (70):
  • [8] Hardening and strain rate sensitivity in stage IV of deformation in fcc and bcc metals
    Les, P
    Stuewe, HP
    Zehetbauer, M
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 1997, 234 : 453 - 455
  • [9] Micromechanical model for ferroelectric and ferroelastic single crystals
    Elhadrouz, M
    Ben Zineb, T
    Patoor, E
    SMART STRUCTURES AND MATERIALS 2004: ACTIVE MATERIALS: BEHAVIOR AND MECHANICS, 2004, 5387 : 346 - 353
  • [10] A unified thermal-hardening and thermal-softening constitutive model of soils
    Xiong, Yong-lin
    Yang, Qi-lai
    Sang, Qin-yang
    Zhu, Yao-hong
    Zhang, Sheng
    Zheng, Rong-yue
    APPLIED MATHEMATICAL MODELLING, 2019, 74 : 73 - 84