Integration and microlocal analysis in Colombeau algebras of generalized functions

被引:16
作者
Hörmann, G [1 ]
机构
[1] Univ Vienna, Inst Math, A-1090 Vienna, Austria
关键词
D O I
10.1006/jmaa.1999.6565
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study integration and Fourier transform in the Colombeau algebra G(T) of tempered generalized functions using a general damping factor. This unifies different settings described earlier by J. F. Colombeau, M. Nedeljikov, S. Pilipovic, and M. Damsma (for a simplified version). Further we prove characterizations of regularity for generalized functions in two situations: compactly supported or in the image of T' inside G(T). Finally we investigate the notion of wave front set in the Colombeau algebra G(Omega), Omega an open subset of R-n, and show that it is in fact independent of the damping measure used for Fourier transform. (C) 1999 Academic Press.
引用
收藏
页码:332 / 348
页数:17
相关论文
共 12 条
  • [1] Colombeau J. F, 1985, N HOLLAND MATH STUDI, V113
  • [2] DAMSMA M, 1991, 954 U TWENT
  • [3] DAMSMA M, 1990, 841 U TWENT
  • [4] GROSSER M, 1999, P WORKSH E SCHROD I
  • [5] Hormander L., 1990, Distribution theory and Fourier analysis, VI
  • [6] KUNZINGER M, 1996, THESIS U VIENNA
  • [7] NEDELJKOV M, 1998, PITMAN RES NOTES MAT, V385
  • [8] NEDELJKOV M, 1992, PUBL I MATH, V52, P95
  • [9] OBERGUGGENBERGE.M, 1992, PITMAN RES NOTES MAT, V259
  • [10] Radyno Ya. V., 1993, RUSSIAN ACAD SCI DOK, V46, P414