Scattering Amplitudes and the Conservative Hamiltonian for Binary Systems at Third Post-Minkowskian Order

被引:399
作者
Bern, Zvi [1 ]
Cheung, Clifford [2 ]
Roiban, Radu [3 ]
Shen, Chia-Hsien [1 ]
Solon, Mikhail P. [2 ]
Zeng, Mao [4 ]
机构
[1] Univ Calif Los Angeles, Mani L Bhaumik Inst Theoret Phys, Los Angeles, CA 90095 USA
[2] CALTECH, Walter Burke Inst Theoret Phys, Pasadena, CA 91125 USA
[3] Penn State Univ, Inst Gravitat & Cosmos, University Pk, PA 16802 USA
[4] Swiss Fed Inst Technol, Inst Theoret Phys, CH-8093 Zurich, Switzerland
基金
瑞士国家科学基金会;
关键词
GRAVITATIONAL-RADIATION REACTION; MULTIPLE BREMSSTRAHLUNG; DIFFERENTIAL-EQUATIONS; TREE AMPLITUDES; PARTICLES; MOTION; APPROXIMATION; DYNAMICS; OBJECTS; FIELD;
D O I
10.1103/PhysRevLett.122.201603
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present the amplitude for classical scattering of gravitationally interacting massive scalars at third post-Minkowskian order. Our approach harnesses powerful tools from the modern amplitudes program such as generalized unitarity and the double-copy construction, which relates gravity integrands to simpler gauge-theory expressions. Adapting methods for integration and matching from effective field theory, we extract the conservative Hamiltonian for compact spinless binaries at third post-Minkowskian order. The resulting Hamiltonian is in complete agreement with corresponding terms in state-of-the-art expressions at fourth post-Newtonian order as well as the probe limit at all orders in velocity. We also derive the scattering angle at third post-Minkowskian order and find agreement with known results.
引用
收藏
页数:7
相关论文
共 95 条
[1]   Observation of Gravitational Waves from a Binary Black Hole Merger [J].
Abbott, B. P. ;
Abbott, R. ;
Abbott, T. D. ;
Abernathy, M. R. ;
Acernese, F. ;
Ackley, K. ;
Adams, C. ;
Adams, T. ;
Addesso, P. ;
Adhikari, R. X. ;
Adya, V. B. ;
Affeldt, C. ;
Agathos, M. ;
Agatsuma, K. ;
Aggarwal, N. ;
Aguiar, O. D. ;
Aiello, L. ;
Ain, A. ;
Ajith, P. ;
Allen, B. ;
Allocca, A. ;
Altin, P. A. ;
Anderson, S. B. ;
Anderson, W. G. ;
Arai, K. ;
Arain, M. A. ;
Araya, M. C. ;
Arceneaux, C. C. ;
Areeda, J. S. ;
Arnaud, N. ;
Arun, K. G. ;
Ascenzi, S. ;
Ashton, G. ;
Ast, M. ;
Aston, S. M. ;
Astone, P. ;
Aufmuth, P. ;
Aulbert, C. ;
Babak, S. ;
Bacon, P. ;
Bader, M. K. M. ;
Baker, P. T. ;
Baldaccini, F. ;
Ballardin, G. ;
Ballmer, S. W. ;
Barayoga, J. C. ;
Barclay, S. E. ;
Barish, B. C. ;
Barker, D. ;
Barone, F. .
PHYSICAL REVIEW LETTERS, 2016, 116 (06)
[2]  
[Anonymous], PHYS REV D
[3]  
[Anonymous], ARXIV181208752
[4]  
[Anonymous], ARXIV190107102
[5]  
[Anonymous], PHYS REV D
[6]  
[Anonymous], ARXIV181206895
[7]  
[Anonymous], ARXIV170510262
[8]  
[Anonymous], ARXIV180601872
[9]  
[Anonymous], ARXIV170602314
[10]  
[Anonymous], 2012, Analytic tools for Feynman integrals, DOI DOI 10.1007/978-3-642-34886-0