Polymer Nanocomposites with Ultrahigh Energy Density and High Discharge Efficiency by Modulating their Nanostructures in Three Dimensions

被引:284
作者
Zhang, Xin [1 ,2 ,3 ]
Jiang, Jianyong [1 ]
Shen, Zhonghui [1 ]
Dan, Zhenkang [1 ]
Li, Ming [1 ]
Lin, Yuanhua [1 ]
Nan, Ce-Wen [1 ]
Chen, Longqing [4 ]
Shen, Yang [1 ]
机构
[1] Tsinghua Univ, State Key Lab New Ceram & Fine Proc, Sch Mat Sci & Engn, Beijing 100084, Peoples R China
[2] Tsinghua Univ, Lab Adv Energy Storage Mat, Shenzhen 518057, Peoples R China
[3] Tsinghua Univ, Devices Res Inst, Shenzhen 518057, Peoples R China
[4] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA
关键词
anisotropic materials; dielectrics; energy density; nanocomposites; nanostructures; HIGH DIELECTRIC-CONSTANT; BREAKDOWN STRENGTH; FERROELECTRIC POLYMERS; COMPOSITES; NANOPARTICLES; CAPACITORS; STORAGE; PERMITTIVITY; NANOFIBERS; NANOWIRES;
D O I
10.1002/adma.201707269
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Manipulating microstructures of composites in three dimensions has been a long standing challenge. An approach is proposed and demonstrated to fabricate artificial nanocomposites by controlling the 3D distribution and orientation of oxide nanoparticles in a polymer matrix. In addition to possessing much enhanced mechanical properties, these nanocomposites can sustain extremely high voltages up to approximate to 10 kV, exhibiting high dielectric breakdown strength and low leakage current. These nanocomposites show great promise in resolving the paradox between dielectric constant and breakdown strength, leading to ultrahigh electrical energy density (over 2000% higher than that of the bench-mark polymer dielectrics) and discharge efficiency. This approach opens up a new avenue for the design and modulation of nanocomposites. It is adaptable to the roll-to-roll fabrication process and could be employed as a general technique for the mass production of composites with intricate nanostructures, which is otherwise not possible using conventional polymer processing techniques.
引用
收藏
页数:10
相关论文
共 41 条
[1]   Simulation of damage evolution in composites: A phase-field model [J].
Biner, S. B. ;
Hu, S. Y. .
ACTA MATERIALIA, 2009, 57 (07) :2088-2097
[2]   Bioinspired design and assembly of platelet reinforced polymer films [J].
Bonderer, Lorenz J. ;
Studart, Andre R. ;
Gauckler, Ludwig J. .
SCIENCE, 2008, 319 (5866) :1069-1073
[3]   Nano-indentation of polymeric surfaces [J].
Briscoe, BJ ;
Fiori, L ;
Pelillo, E .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1998, 31 (19) :2395-2405
[4]   Polymer-Based Dielectrics with High Energy Storage Density [J].
Chen, Qin ;
Shen, Yang ;
Zhang, Shihai ;
Zhang, Q. M. .
ANNUAL REVIEW OF MATERIALS RESEARCH, VOL 45, 2015, 45 :433-458
[5]   A dielectric polymer with high electric energy density and fast discharge speed [J].
Chu, Baojin ;
Zhou, Xin ;
Ren, Kailiang ;
Neese, Bret ;
Lin, Minren ;
Wang, Qing ;
Bauer, F. ;
Zhang, Q. M. .
SCIENCE, 2006, 313 (5785) :334-336
[6]   Flexible Nanodielectric Materials with High Permittivity for Power Energy Storage [J].
Dang, Zhi-Min ;
Yuan, Jin-Kai ;
Yao, Sheng-Hong ;
Liao, Rui-Jin .
ADVANCED MATERIALS, 2013, 25 (44) :6334-6365
[7]   Composites Reinforced in Three Dimensions by Using Low Magnetic Fields [J].
Erb, Randall M. ;
Libanori, Rafael ;
Rothfuchs, Nuria ;
Studart, Andre R. .
SCIENCE, 2012, 335 (6065) :199-204
[8]  
FREITAS G, 1994, J ADV MATER, V25, P36
[9]   Nanoparticle, Size, Shape, and Interfacial Effects on Leakage Current Density, Permittivity, and Breakdown Strength of Metal Oxide-Polyolefin Nanocomposites: Experiment and Theory [J].
Guo, Neng ;
DiBenedetto, Sara A. ;
Tewari, Pratyush ;
Lanagan, Michael T. ;
Ratner, Mark A. ;
Marks, Tobin J. .
CHEMISTRY OF MATERIALS, 2010, 22 (04) :1567-1578
[10]   Self-assembly and mineralization of peptide-amphiphile nanofibers [J].
Hartgerink, JD ;
Beniash, E ;
Stupp, SI .
SCIENCE, 2001, 294 (5547) :1684-1688