Using Sentinel-1, Sentinel-2, and Planet satellite data to map field-level tillage practices in smallholder systems

被引:8
|
作者
Liu, Yin [1 ]
Rao, Preeti [1 ,2 ]
Zhou, Weiqi [1 ]
Singh, Balwinder [3 ,4 ]
Srivastava, Amit K. [5 ]
Poonia, Shishpal P. [3 ]
Van Berkel, Derek [1 ]
Jain, Meha [1 ]
机构
[1] Univ Michigan, Sch Environm & Sustainabil, Ann Arbor, MI 48109 USA
[2] Azim Premji Univ, Ctr Climate Change & Sustainabil, Bengaluru, India
[3] Int Mazie & Wheat Improvement Ctr CIMMYT, New Delhi, India
[4] Dept Primary Ind & Reg Dev, Northam, WA, Australia
[5] IRRI South Asia Reg Ctr ISARC, NSRTC Campus, Varanasi, Uttar Pradesh, India
来源
PLOS ONE | 2022年 / 17卷 / 11期
基金
美国国家航空航天局;
关键词
CROP RESIDUE; ZERO-TILLAGE; SOIL; PLAINS; SCALES; YIELD;
D O I
10.1371/journal.pone.0277425
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Remote sensing can be used to map tillage practices at large spatial and temporal scales. However, detecting such management practices in smallholder systems is challenging given that the size of fields is smaller than historical readily-available satellite imagery. In this study we used newer, higher-resolution satellite data from Sentinel-1, Sentinel-2, and Planet to map tillage practices in the Eastern Indo-Gangetic Plains in India. We specifically tested the classification performance of single sensor and multiple sensor random forest models, and the impact of spatial, temporal, or spectral resolution on classification accuracy. We found that when considering a single sensor, the model that used Planet imagery (3 m) had the highest classification accuracy (86.55%) while the model that used Sentinel-1 data (10 m) had the lowest classification accuracy (62.28%). When considering sensor combinations, the model that used data from all three sensors achieved the highest classification accuracy (87.71%), though this model was not statistically different from the Planet only model when considering 95% confidence intervals from bootstrap analyses. We also found that high levels of accuracy could be achieved by only using imagery from the sowing period. Considering the impact of spatial, temporal, and spectral resolution on classification accuracy, we found that improved spatial resolution from Planet contributed the most to improved classification accuracy. Overall, it is possible to use readily-available, high spatial resolution satellite data to map tillage practices of smallholder farms, even in heterogeneous systems with small field sizes.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Using Sentinel-2 to Track Field-Level Tillage Practices at Regional Scales in Smallholder Systems
    Zhou, Weiqi
    Rao, Preeti
    Jat, Mangi L.
    Singh, Balwinder
    Poonia, Shishpal
    Bijarniya, Deepak
    Kumar, Manish
    Singh, Love Kumar
    Schulthess, Urs
    Singh, Rajbir
    Jain, Meha
    REMOTE SENSING, 2021, 13 (24)
  • [2] Using Sentinel-1, Sentinel-2, and Planet Imagery to Map Crop Type of Smallholder Farms
    Rao, Preeti
    Zhou, Weiqi
    Bhattarai, Nishan
    Srivastava, Amit K.
    Singh, Balwinder
    Poonia, Shishpal
    Lobell, David B.
    Jain, Meha
    REMOTE SENSING, 2021, 13 (10)
  • [3] Mapping Field-Level Maize Yields in Ethiopian Smallholder Systems Using Sentinel-2 Imagery
    Mondschein, Zachary
    Paliwal, Ambica
    Sida, Tesfaye Shiferaw
    Chamberlin, Jordan
    Wang, Runzi
    Jain, Meha
    REMOTE SENSING, 2024, 16 (18)
  • [4] SENTINEL-1 & SENTINEL-2 DATA FOR SOIL TILLAGE CHANGE DETECTION
    Satalino, G.
    Mattia, F.
    Balenzano, A.
    Lovergine, F. P.
    Rinaldi, M.
    De Santis, A. P.
    Ruggieri, S.
    Nafria Garcia, D. A.
    Paredes Gomez, V.
    Ceschia, E.
    Planells, M.
    Le Toan, T.
    Ruiz, A.
    Moreno, J. F.
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 6627 - 6630
  • [5] Mangrove forests mapping using Sentinel-1 and Sentinel-2 satellite images
    Alireza Sharifi
    Shilan Felegari
    Aqil Tariq
    Arabian Journal of Geosciences, 2022, 15 (20)
  • [6] Classification of multitemporal Sentinel-2 data for field-level monitoring of rice cropping practices in Taiwan
    Nguyen-Thanh Son
    Chen, Chi-Farn
    Chen, Cheng-Ru
    Guo, Horng-Yuh
    ADVANCES IN SPACE RESEARCH, 2020, 65 (08) : 1910 - 1921
  • [7] Delineating Smallholder Maize Farms from Sentinel-1 Coupled with Sentinel-2 Data Using Machine Learning
    Mashaba-Munghemezulu, Zinhle
    Chirima, George Johannes
    Munghemezulu, Cilence
    SUSTAINABILITY, 2021, 13 (09)
  • [8] Crop type identification and spatial mapping using Sentinel-2 satellite data with focus on field-level information
    Gumma, Murali Krishna
    Tummala, Kimeera
    Dixit, Sreenath
    Collivignarelli, Francesco
    Holecz, Francesco
    Kolli, Rao N.
    Whitbread, Anthony M.
    GEOCARTO INTERNATIONAL, 2022, 37 (07) : 1833 - 1849
  • [9] EVALUATION OF BURNT BUILDING DAMAGE USING SENTINEL-1 AND SENTINEL-2 DATA
    Jung, Jungkyo
    Yun, Sang-Ho
    Xu, Jeri
    Xie, Boyi
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 6875 - 6878
  • [10] WETLAND CLASSIFICATION WITH SWIN TRANSFORMER USING SENTINEL-1 AND SENTINEL-2 DATA
    Jamali, Ali
    Mohammadimanesh, Fariba
    Mahdianpari, Masoud
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 6213 - 6216