Rectification and Photoconduction Mapping of Axial Metal-Semiconductor Interfaces Embedded in GaAs Nanowires

被引:7
作者
Orru, Marta [1 ]
Piazza, Vincenzo [2 ]
Rubini, Silvia [1 ]
Roddaro, Stefano [1 ,3 ,4 ]
机构
[1] CNR, Ist Officina Mat, I-34149 Trieste, Italy
[2] Ist Italiano Tecnol, Ctr Nanotechnol Innovat NEST, I-56127 Pisa, Italy
[3] Scuola Normale Super Pisa, NEST, I-56127 Pisa, Italy
[4] CNR, Ist Nanosci, I-56127 Pisa, Italy
关键词
FIELD-EFFECT TRANSISTORS; SCHOTTKY JUNCTIONS; QUANTUM DOTS; WRAP GATE; SILICON; HETEROSTRUCTURES; MANIPULATION; EMISSION; BARRIERS; CONTACTS;
D O I
10.1103/PhysRevApplied.4.044010
中图分类号
O59 [应用物理学];
学科分类号
摘要
Semiconductor nanowires have emerged as an important enabling technology and are today used in many advanced device architectures, with an impact both for what concerns fundamental science and in view of future applications. One of the key challenges in the development of nanowire-based devices is the fabrication of reliable nanoscale contacts. Recent developments in the creation of metal-semiconductor junctions by thermal annealing of metallic electrodes offer promising perspectives. Here, we analyze the optoelectronic properties of nano-Schottky barriers obtained thanks to the controlled formation of metallic AuGa regions in GaAs nanowire. The junctions display a rectifying behavior and their transport characteristics are analyzed to extract the average ideality factor and barrier height in the current architecture. The presence, location, and properties of the Schottky junctions are cross-correlated with spatially resolved photocurrent measurements. Broadband light emission is reported in the reverse breakdown regime; this observation, combined with the absence of electroluminescence at forward bias, is consistent with the device unipolar nature.
引用
收藏
页数:7
相关论文
共 52 条
[1]   Vapor-liquid-solid and vapor-solid growth of self-catalyzed GaAs nanowires [J].
Ambrosini, S. ;
Fanetti, M. ;
Grillo, V. ;
Franciosi, A. ;
Rubini, S. .
AIP ADVANCES, 2011, 1 (04)
[2]   200 MHz optical signal modulation from a porous silicon light emitting device [J].
Balucani, M ;
La Monica, S ;
Ferrari, A .
APPLIED PHYSICS LETTERS, 1998, 72 (06) :639-640
[3]   InAs nanowire growth on oxide-masked ⟨111⟩ silicon [J].
Bjoerk, Mikael T. ;
Schmid, Heinz ;
Breslin, Chris M. ;
Gignac, Lynne ;
Riel, Heike .
JOURNAL OF CRYSTAL GROWTH, 2012, 344 (01) :31-37
[4]   One-dimensional steeplechase for electrons realized [J].
Björk, MT ;
Ohlsson, BJ ;
Sass, T ;
Persson, AI ;
Thelander, C ;
Magnusson, MH ;
Deppert, K ;
Wallenberg, LR ;
Samuelson, L .
NANO LETTERS, 2002, 2 (02) :87-89
[5]   Rigorous analysis of image force barrier lowering in bounded geometries: application to semiconducting nanowires [J].
Calahorra, Yonatan ;
Mendels, Dan ;
Epstein, Ariel .
NANOTECHNOLOGY, 2014, 25 (14)
[6]   High-quality InAs/InSb nanowire heterostructures grown by metal-organic vapor-phase epitaxy [J].
Caroff, Philippe ;
Wagner, Jakob B. ;
Dick, Kimberly A. ;
Nilsson, Henrik A. ;
Jeppsson, Mattias ;
Deppert, Knut ;
Samuelson, Lars ;
Wallenberg, L. Reine ;
Wernersson, Lars-Erik .
SMALL, 2008, 4 (07) :878-882
[7]   Kinetic Manipulation of Silicide Phase Formation in Si Nanowire Templates [J].
Chen, Yu ;
Lin, Yung-Chen ;
Zhong, Xing ;
Cheng, Hung-Chieh ;
Duan, Xiangfeng ;
Huang, Yu .
NANO LETTERS, 2013, 13 (08) :3703-3708
[8]   Kinetic Competition Model and Size-Dependent Phase Selection in 1-D Nanostructures [J].
Chen, Yu ;
Lin, Yung-Chen ;
Huang, Chun-Wei ;
Wang, Chun-Wen ;
Chen, Lih-Juann ;
Wu, Wen-Wei ;
Huang, Yu .
NANO LETTERS, 2012, 12 (06) :3115-3120
[9]   PHOTON EMISSION FROM AVALANCHE BREAKDOWN IN SILICON [J].
CHYNOWETH, AG ;
MCKAY, KG .
PHYSICAL REVIEW, 1956, 102 (02) :369-376
[10]   Gallium arsenide p-i-n radial structures for photovoltaic applications [J].
Colombo, C. ;
Heiss, M. ;
Graetzel, M. ;
Fontcuberta i Morral, A. .
APPLIED PHYSICS LETTERS, 2009, 94 (17)