Multiple Virtual Tunneling of Dirac Fermions in Granular Graphene

被引:4
|
作者
Pachoud, Alexandre [1 ,2 ,3 ]
Jaiswal, Manu [1 ,3 ,4 ]
Wang, Yu [3 ,4 ]
Hong, Byung-Hee [5 ]
Ahn, Jong-Hyun [6 ]
Loh, Kian Ping [3 ,4 ]
Oezyilmaz, Barbaros [1 ,2 ,3 ,7 ]
机构
[1] Natl Univ Singapore, Dept Phys, Singapore 117542, Singapore
[2] NUS, Grad Sch Integrat Sci & Engn NGS, Singapore 117456, Singapore
[3] Natl Univ Singapore, Graphene Res Ctr, Singapore 117542, Singapore
[4] Natl Univ Singapore, Dept Chem, Singapore 117543, Singapore
[5] Seoul Natl Univ, Dept Chem, Seoul 152742, South Korea
[6] Yonsei Univ, Sch Elect & Elect Engn, Seoul 120749, South Korea
[7] Natl Univ Singapore, Nanocore, Singapore 117576, Singapore
来源
SCIENTIFIC REPORTS | 2013年 / 3卷
关键词
RAMAN-SPECTROSCOPY; MESOSCOPIC FLUCTUATIONS; LOCALIZATION; TEMPERATURE; DEFECTS;
D O I
10.1038/srep03404
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Graphene charge carriers behave as massless Dirac fermions, opening the exciting possibility to observe long-range virtual tunneling of electrons in a solid. In granular metals, electron hops arising from series of virtual transitions are predicted to yield observable currents at low-enough temperatures, but to date experimental evidence is lacking. We report on electron transport in granular graphene films self-assembled by hydrogenation of suspended graphene. While the log-conductance shows a characteristic T-1/2 temperature dependence, cooling the samples below 10 K drives a triple crossover: a slope break in log-conductance, simultaneous to a substantial increase in magneto-conductance and onset of large mesoscopic conductance fluctuations. These phenomena are signatures of virtual transitions of electrons between distant localized states, and conductance statistics reveal that the high crossover-temperature is due to the Dirac nature of granular graphene charge carriers.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Dirac fermions in asymmetric graphene in electromagnetic field
    Mishra, Km Arti
    Kumar, Vipin
    OPTICAL AND QUANTUM ELECTRONICS, 2020, 52 (06)
  • [32] Dirac Fermions in Strongly Bound Graphene Systems
    Li, Yuanchang
    Chen, Pengcheng
    Zhou, Gang
    Li, Jia
    Wu, Jian
    Gu, Bing-Lin
    Zhang, S. B.
    Duan, Wenhui
    PHYSICAL REVIEW LETTERS, 2012, 109 (20)
  • [33] Observation of negative refraction of Dirac fermions in graphene
    Lee, Gil-Ho
    Park, Geon-Hyoung
    Lee, Hu-Jong
    NATURE PHYSICS, 2015, 11 (11) : 925 - 929
  • [34] Electrically Induced Dirac Fermions in Graphene Nanoribbons
    Pizzochero, Michele
    Tepliakov, Nikita, V
    Mostofi, Arash A.
    Kaxiras, Efthimios
    NANO LETTERS, 2021, 21 (21) : 9332 - 9338
  • [35] Dirac fermions in asymmetric graphene in electromagnetic field
    Km Arti Mishra
    Vipin Kumar
    Optical and Quantum Electronics, 2020, 52
  • [36] Size quantization of Dirac fermions in graphene constrictions
    Terres, B.
    Chizhova, L. A.
    Libisch, F.
    Peiro, J.
    Joerger, D.
    Engels, S.
    Girschik, A.
    Watanabe, K.
    Taniguchi, T.
    Rotkin, S. V.
    Burgdoerfer, J.
    Stampfer, C.
    NATURE COMMUNICATIONS, 2016, 7
  • [37] Quantum transport of Dirac fermions in graphene nanostructures
    Dollfus, Philippe
    Nguyen, Viet Hung
    Do, Van Nam
    Bournel, Arnaud
    2010 14TH INTERNATIONAL WORKSHOP ON COMPUTATIONAL ELECTRONICS (IWCE 2010), 2010, : 39 - 44
  • [38] Electric transport theory of Dirac fermions in graphene
    Yan, Xin-Zhong
    Romiah, Yousef
    Ting, C. S.
    PHYSICAL REVIEW B, 2008, 77 (12)
  • [39] Size quantization of Dirac fermions in graphene constrictions
    B. Terrés
    L. A. Chizhova
    F. Libisch
    J. Peiro
    D. Jörger
    S. Engels
    A. Girschik
    K. Watanabe
    T. Taniguchi
    S. V. Rotkin
    J. Burgdörfer
    C. Stampfer
    Nature Communications, 7
  • [40] Energy relaxation of hot Dirac fermions in graphene
    Tse, Wang-Kong
    Das Sarma, S.
    PHYSICAL REVIEW B, 2009, 79 (23):