Multiple Virtual Tunneling of Dirac Fermions in Granular Graphene

被引:4
|
作者
Pachoud, Alexandre [1 ,2 ,3 ]
Jaiswal, Manu [1 ,3 ,4 ]
Wang, Yu [3 ,4 ]
Hong, Byung-Hee [5 ]
Ahn, Jong-Hyun [6 ]
Loh, Kian Ping [3 ,4 ]
Oezyilmaz, Barbaros [1 ,2 ,3 ,7 ]
机构
[1] Natl Univ Singapore, Dept Phys, Singapore 117542, Singapore
[2] NUS, Grad Sch Integrat Sci & Engn NGS, Singapore 117456, Singapore
[3] Natl Univ Singapore, Graphene Res Ctr, Singapore 117542, Singapore
[4] Natl Univ Singapore, Dept Chem, Singapore 117543, Singapore
[5] Seoul Natl Univ, Dept Chem, Seoul 152742, South Korea
[6] Yonsei Univ, Sch Elect & Elect Engn, Seoul 120749, South Korea
[7] Natl Univ Singapore, Nanocore, Singapore 117576, Singapore
来源
SCIENTIFIC REPORTS | 2013年 / 3卷
关键词
RAMAN-SPECTROSCOPY; MESOSCOPIC FLUCTUATIONS; LOCALIZATION; TEMPERATURE; DEFECTS;
D O I
10.1038/srep03404
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Graphene charge carriers behave as massless Dirac fermions, opening the exciting possibility to observe long-range virtual tunneling of electrons in a solid. In granular metals, electron hops arising from series of virtual transitions are predicted to yield observable currents at low-enough temperatures, but to date experimental evidence is lacking. We report on electron transport in granular graphene films self-assembled by hydrogenation of suspended graphene. While the log-conductance shows a characteristic T-1/2 temperature dependence, cooling the samples below 10 K drives a triple crossover: a slope break in log-conductance, simultaneous to a substantial increase in magneto-conductance and onset of large mesoscopic conductance fluctuations. These phenomena are signatures of virtual transitions of electrons between distant localized states, and conductance statistics reveal that the high crossover-temperature is due to the Dirac nature of granular graphene charge carriers.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Cloning of Dirac fermions in graphene superlattices
    Ponomarenko, L. A.
    Gorbachev, R. V.
    Yu, G. L.
    Elias, D. C.
    Jalil, R.
    Patel, A. A.
    Mishchenko, A.
    Mayorov, A. S.
    Woods, C. R.
    Wallbank, J. R.
    Mucha-Kruczynski, M.
    Piot, B. A.
    Potemski, M.
    Grigorieva, I. V.
    Novoselov, K. S.
    Guinea, F.
    Fal'ko, V. I.
    Geim, A. K.
    NATURE, 2013, 497 (7451) : 594 - 597
  • [22] Drude conductivity of Dirac fermions in graphene
    Horng, Jason
    Chen, Chi-Fan
    Geng, Baisong
    Girit, Caglar
    Zhang, Yuanbo
    Hao, Zhao
    Bechtel, Hans A.
    Martin, Michael
    Zettl, Alex
    Crommie, Michael F.
    Shen, Y. Ron
    Wang, Feng
    PHYSICAL REVIEW B, 2011, 83 (16)
  • [23] Superconductivity of disordered Dirac fermions in graphene
    Potirniche, Ionut-Dragos
    Maciejko, Joseph
    Nandkishore, Rahul
    Sondhi, S. L.
    PHYSICAL REVIEW B, 2014, 90 (09)
  • [24] Confinement of Dirac fermions in gapped graphene
    Pakdel, Fatemeh
    Maleki, Mohammad Ali
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [25] Thermoelectric power of Dirac fermions in graphene
    Yan, Xin-Zhong
    Romiah, Yousef
    Ting, C. S.
    PHYSICAL REVIEW B, 2009, 80 (16):
  • [26] Tunneling Conductance in Strained Graphene-Based Superconductor: Effect of Asymmetric Weyl–Dirac Fermions
    Bumned Soodchomshom
    Journal of Superconductivity and Novel Magnetism, 2011, 24 : 1715 - 1724
  • [27] Pseudospin-filter tunneling of massless Dirac fermions
    Li, Zhengdong
    Zeng, Wen
    CHINESE PHYSICS B, 2024, 33 (11)
  • [28] Pseudospin-filter tunneling of massless Dirac fermions
    李政栋
    曾文
    Chinese Physics B, 2024, 33 (11) : 445 - 448
  • [29] Magnetic confinement of massless Dirac fermions in graphene
    De Martino, A.
    Dell'Anna, L.
    Egger, R.
    PHYSICAL REVIEW LETTERS, 2007, 98 (06)
  • [30] Guiding Dirac Fermions in Graphene with a Carbon Nanotube
    Cheng, Austin
    Taniguchi, Takashi
    Watanabe, Kenji
    Kim, Philip
    Pillet, Jean-Damien
    PHYSICAL REVIEW LETTERS, 2019, 123 (21)