Multiple Virtual Tunneling of Dirac Fermions in Granular Graphene

被引:4
|
作者
Pachoud, Alexandre [1 ,2 ,3 ]
Jaiswal, Manu [1 ,3 ,4 ]
Wang, Yu [3 ,4 ]
Hong, Byung-Hee [5 ]
Ahn, Jong-Hyun [6 ]
Loh, Kian Ping [3 ,4 ]
Oezyilmaz, Barbaros [1 ,2 ,3 ,7 ]
机构
[1] Natl Univ Singapore, Dept Phys, Singapore 117542, Singapore
[2] NUS, Grad Sch Integrat Sci & Engn NGS, Singapore 117456, Singapore
[3] Natl Univ Singapore, Graphene Res Ctr, Singapore 117542, Singapore
[4] Natl Univ Singapore, Dept Chem, Singapore 117543, Singapore
[5] Seoul Natl Univ, Dept Chem, Seoul 152742, South Korea
[6] Yonsei Univ, Sch Elect & Elect Engn, Seoul 120749, South Korea
[7] Natl Univ Singapore, Nanocore, Singapore 117576, Singapore
来源
SCIENTIFIC REPORTS | 2013年 / 3卷
关键词
RAMAN-SPECTROSCOPY; MESOSCOPIC FLUCTUATIONS; LOCALIZATION; TEMPERATURE; DEFECTS;
D O I
10.1038/srep03404
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Graphene charge carriers behave as massless Dirac fermions, opening the exciting possibility to observe long-range virtual tunneling of electrons in a solid. In granular metals, electron hops arising from series of virtual transitions are predicted to yield observable currents at low-enough temperatures, but to date experimental evidence is lacking. We report on electron transport in granular graphene films self-assembled by hydrogenation of suspended graphene. While the log-conductance shows a characteristic T-1/2 temperature dependence, cooling the samples below 10 K drives a triple crossover: a slope break in log-conductance, simultaneous to a substantial increase in magneto-conductance and onset of large mesoscopic conductance fluctuations. These phenomena are signatures of virtual transitions of electrons between distant localized states, and conductance statistics reveal that the high crossover-temperature is due to the Dirac nature of granular graphene charge carriers.
引用
收藏
页数:6
相关论文
共 50 条
  • [11] Super-Klein tunneling of Dirac fermions through electrostatic gratings in graphene
    Contreras-Astorga, Alonso
    Correa, Francisco
    Jakubsky, Vit
    PHYSICAL REVIEW B, 2020, 102 (11)
  • [12] Thermometry for Dirac fermions in graphene
    Liu, Fan-Hung
    Hsu, Chang-Shun
    Lo, Shun-Tsung
    Chuang, Chiashain
    Huang, Lung-, I
    Woo, Tak-Pong
    Liang, Chi-Te
    Fukuyama, Y.
    Yang, Y.
    Elmquist, R. E.
    Wang, Pengjie
    Lin, Xi
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2015, 66 (01) : 1 - 6
  • [13] Thermometry for Dirac fermions in graphene
    Fan-Hung Liu
    Chang-Shun Hsu
    Shun-Tsung Lo
    Chiashain Chuang
    Lung-I Huang
    Tak-Pong Woo
    Chi-Te Liang
    Y. Fukuyama
    Y. Yang
    R. E. Elmquist
    Pengjie Wang
    Xi Lin
    Journal of the Korean Physical Society, 2015, 66 : 1 - 6
  • [14] Composite Dirac fermions in graphene
    Khveshchenko, D. V.
    PHYSICAL REVIEW B, 2007, 75 (15):
  • [15] Tunneling of Dirac fermions in graphene nanostructure modulated by time dependent rectangular wave potential
    Biswas, R.
    Mukhopadhyay, S.
    Sinha, C.
    PHYSICA B-CONDENSED MATTER, 2025, 705
  • [16] TUNNELING FOR DIRAC FERMIONS IN CONSTANT MAGNETIC FIELD
    Choubabi, El Bouazzaoui
    El Bouziani, Mohamed
    Jellal, Ahmed
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2010, 7 (06) : 909 - 931
  • [17] Interlayer Tunneling Spectroscopy of Dirac Fermions in Graphite
    Latyshev, Yu. I.
    Orlov, A. P.
    Latyshev, A. Yu.
    Vignolles, D.
    FULLERENES NANOTUBES AND CARBON NANOSTRUCTURES, 2010, 18 (4-6) : 493 - 496
  • [18] Analogies for Dirac fermions physics in graphene
    Dragoman, Daniela
    Dragoman, Mircea
    SOLID-STATE ELECTRONICS, 2024, 211
  • [19] Weak localization of Dirac fermions in graphene
    Yan, Xin-Zhong
    Ting, C. S.
    PHYSICAL REVIEW LETTERS, 2008, 101 (12)
  • [20] Cloning of Dirac fermions in graphene superlattices
    L. A. Ponomarenko
    R. V. Gorbachev
    G. L. Yu
    D. C. Elias
    R. Jalil
    A. A. Patel
    A. Mishchenko
    A. S. Mayorov
    C. R. Woods
    J. R. Wallbank
    M. Mucha-Kruczynski
    B. A. Piot
    M. Potemski
    I. V. Grigorieva
    K. S. Novoselov
    F. Guinea
    V. I. Fal’ko
    A. K. Geim
    Nature, 2013, 497 : 594 - 597