In this paper, a novel method so-called bioluminescence inhibition assay with luminous bacteria (Photobacterium phosphoreum) was introduced to evaluate the toxicity of quantum dots. The bioassay was based on measuring the decrease of the light emitted by luminous bacteria. With obvious advantages of simplicity, rapidity and sensitivity, it can dramatically improve the efficiency of probing the toxicity of QDs. Based on this method, we systemically explored the effect of the composition and surface modification on QDs' toxicity. The experiment of composition effect was performed using three kinds of QDs, namely CdSe, CdTe and ZnS-AgInS2 QDs with the same stabilizer - dihydrolipoic acid. As for the effect of different stabilizers, mercaptoacetic acid, L-cysteine and dihydrolipoic acid stabilized CdSe were researched, respectively. Our results demonstrated that both the composition and surface modification were the important factors affecting the toxicity of QDs. In addition, a concentration dependence of toxicity was also found. (C) 2009 Elsevier B.V. All rights reserved.