A NEW CLASS OF COMPLEX TIME-FREQUENCY DISTRIBUTIONS FOR ESTIMATING PHASE SYNCHRONY BETWEEN SIGNALS

被引:0
|
作者
Aviyente, Selin [1 ]
机构
[1] Michigan State Univ, Dept Elect & Comp Engn, E Lansing, MI 48824 USA
关键词
Time-frequency analysis; Phase synchrony; Spectrogram Decomposition; KERNEL DECOMPOSITION;
D O I
10.1109/SSP.2009.5278513
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Determining the time-varying phase spectrum of non-stationary signals is important for the quantification of the dynamics between signals and has been widely used in detecting synchrony between chaotic oscillators. Current work in quantifying time and frequency dependent phase information relies on either the Hilbert transform or the complex Morlet wavelet transform [1]. Although these methods are effective at extracting the time-varying phase information, they have some drawbacks such as the assumption that the signals are narrow-band for the Hilbert transform and the non-uniform time-frequency resolution inherent to the wavelet analysis. In this paper, we propose using a general class of complex distributions belonging to Cohen's class for defining time-varying phase spectrum and phase synchrony. This new class of distributions is defined using the spectrogram decomposition of time-frequency distributions and is shown to have improved performance in detecting phase synchrony compared to existing methods using simulated signals.
引用
收藏
页码:561 / 564
页数:4
相关论文
共 50 条
  • [31] Time-frequency phase differences and phase locking to characterize dynamic interactions between cardiovascular signals
    Orini, Michele
    Bailon, Raquel
    Mainardi, Luca T.
    Laguna, Pablo
    2011 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2011, : 4689 - 4692
  • [32] A NEW QUADRATIC TIME-FREQUENCY DISTRIBUTIONAND A COMPARATIVE STUDY OF SEVERAL POPULARQUADRATIC TIME-FREQUENCY DISTRIBUTIONS
    Liu Guizhong Liu Zhimei(information Engineering Institute
    JournalofElectronics(China), 1997, (02) : 104 - 111
  • [33] Estimating time-frequency distributions and scattering functions using the Rihaczek distribution
    Farden, DC
    Scharf, LL
    2004 IEEE SENSOR ARRAY AND MULTICHANNEL SIGNAL PROCESSING WORKSHOP, 2004, : 470 - 474
  • [34] Radar Signals Performance Analysis Based on Time-Frequency Distributions in complex electro-magnetic Environment
    Ren Mingqiu
    Cai Jinyan
    PROCEEDINGS OF THE SECOND INTERNATIONAL SYMPOSIUM ON TEST AUTOMATION & INSTRUMENTATION, VOL. 3, 2008, : 1476 - 1480
  • [35] TIME-FREQUENCY DESIGN AND PROCESSING OF SIGNALS VIA SMOOTHED WIGNER DISTRIBUTIONS
    KRATTENTHALER, W
    HLAWATSCH, F
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1993, 41 (01) : 278 - 287
  • [36] Epileptic Seizure Detection by Quadratic Time-Frequency Distributions of Electroencephalogram signals
    Ghembaza, Fayza
    Djebbari, Abdelghani
    2019 INTERNATIONAL CONFERENCE ON ADVANCED ELECTRICAL ENGINEERING (ICAEE), 2019,
  • [37] Application of time-frequency distributions to the independent component analysis of ECG signals
    Bousbia-Salah, A
    Belouchrani, A
    Cichocki, A
    ISSPA 2001: SIXTH INTERNATIONAL SYMPOSIUM ON SIGNAL PROCESSING AND ITS APPLICATIONS, VOLS 1 AND 2, PROCEEDINGS, 2001, : 238 - 241
  • [38] Analysis and synthesis of multicomponent signals using positive time-frequency distributions
    Technion-Israel Inst of Technology, Haifa, Israel
    IEEE Trans Signal Process, 2 (493-504):
  • [39] Analysis and synthesis of multicomponent signals using positive time-frequency distributions
    Francos, A
    Porat, M
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1999, 47 (02) : 493 - 504
  • [40] Instantaneous frequency and time-frequency distributions
    Jin, Liang
    Yin, Qinye
    Yao, Minli
    Dianzi Kexue Xuekan/Journal of Electronics, 20 (05): : 597 - 603